首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In this paper, modelling gas–liquid bubbly flows is achieved by the introduction of a population balance equation combined with the three-dimensional two-fluid model. For gas–liquid bubbly flows without heat and mass transfer, an average bubble number density transport equation has been incorporated in the commercial code CFX5.7 to better describe the temporal and spatial evolution of the geometrical structure of the gas bubbles. The coalescence and breakage effects of the gas bubbles are modelled according to the coalescence by the random collisions driven by turbulence and wake entrainment while for bubble breakage by the impact of turbulent eddies. Local radial distributions of the void fraction, interfacial area concentration, bubble Sauter mean diameter, and gas and liquid velocities, are compared against experimental data in a vertical pipe flow. Satisfactory agreements for the local distributions are achieved between the predictions and measurements. For gas–liquid bubbly flows with heat and mass transfer, boiling flows at subcooled conditions are considered. Based on the formulation of the MUSIG (multiple-size-group) boiling model and a model considering the forces acting on departing bubbles at the heated surface implemented in the computer code CFX4.4, comparison of model predictions against local measurements is made for the void fraction, bubble Sauter mean diameter, interfacial area concentration, and gas and liquid velocities covering a range of different mass and heat fluxes and inlet subcooling temperatures. Good agreement is achieved with the local radial void fraction, bubble Sauter mean diameter, interfacial area concentration and liquid velocity profiles against measurements. However, significant weakness of the model is evidenced in the prediction of the vapour velocity. Work is in progress through the consideration of additional momentum equations or developing an algebraic slip model to account for the effects of bubble separation.  相似文献   

2.
Mould filling process is a typical gas–liquid metal two phase flow phenomenon. Numerical simulation of the two phase flows of mould filling process can be used to properly predicate the back pressure effect, the gas entrapment defects, and better understand the complex motions of the gas phase and the liquid phase. In this paper, a novel sharp interface incompressible two phase numerical model for mould filling process is presented. A simple ghost fluid method like discretization method and a density evaluation method at face centers of finite difference staggered grid are proposed to overcome the difficulties when solving two phase Navier–Stokes equations with large-density ratio and large-viscosity ratio. A new mass conservation particle level set method is developed to capture the gas–liquid metal phase interface. The classical pressure-correction based SOLA algorithm is modified to solve the two phase Navier–Stokes equations. Two numerical tests including the Zalesak disk problem and the broken dam problem are used to demonstrate the accuracy of the present method. The numerical method is then adopted to simulate three mould filling examples including two high speed CCD camera imaging water filling experiments and an in situ X-ray imaging experiment of pure aluminum filling. The simulation results are in good agreement with the experiments.  相似文献   

3.
In this article, mathematical and numerical models are developed to study pure electrohydrodynamic (EHD) effects on heat transfer and bubble shapes when an initial bubble attached to a superheated horizontal wall in nucleate boiling. In the modelling of EHD effects on heat transfer, an undeformed bubble is considered; the electric body force and Joule heat are added to the momentum and energy equations; governing equations for heat, fluid flow and electric fields are coupled numerically and solved using a non-orthogonal body-fitted mesh system with necessary interfacial treatments at the gas–liquid boundary. While, to study the pure effect of EHD on the deformation of the bubble, the evaluation of a deformable bubble without heat transfer is simulated by volume of fluid (VOF) method based on an axial symmetric Cartesian coordinate system. The simulations indicate that EHD can effectively enhance heat transfer rate of nucleate boiling by influencing the motion of the ring vortex around the bubble and that bubble can be elongated due to the pull in axial direction and push in the negative radial direction by the electric field force.  相似文献   

4.
Gas entrainment by plane liquid jets which plunge into a liquid pool is analyzed by numerical simulations. The numerical model is based on the equations of incompressible newtonian fluids flow. The two-phase flow problem is described with the volume-of-fluid method. The dynamic behaviour of the interface is characterized by two similarity parameters, the capillary number Ca = /σ and the property number Γ = σ(ρ/η4g)1/3 where u is the velocity, η the dynamic viscosity, σ the interface tension, ρ the density and g the gravitational constant. Numerical simulations are performed with the open source CFD code OpenFOAM. In the simulations the stability of the gas–liquid meniscus is tested for different sets of Ca and Γ. Critical values of Ca which indicate the beginning gas entrainment are deduced from the inspection of the simulation results. The findings of the numerical investigations agree well with corresponding experimental results.  相似文献   

5.
A new hyperbolic, two-dimensional two-fluid model is developed to properly solve two-phase gas–liquid flows. Adopting the interfacial pressure jump terms in the momentum equations, the numerical stability is confirmed owing to the improvement in the mathematical property of the equation system. The derivation of the interfacial pressure jump terms is based on the infinitesimal surface-tension effect incorporated in the pressure difference at the gas–liquid interface. Through the characteristic analysis on the equation system, the eight eigenvalues are obtained analytically and they are proved real values representing phasic convective velocities and phasic sound speeds. Furthermore, the characteristic sound speeds are comparable with the earlier experimental data in excellent agreements. In addition, the eigenvectors are obtained analytically and they are shown to be linearly independent. Consequently, the governing equation system is mathematically hyperbolic with reasonable characteristic speeds by which the upwind numerical method avails. Advantage and possibility of the present model are discussed in some detail.  相似文献   

6.
We perform an analysis of the pattern formation for a moving sheet of inviscid fluid. The sheet, which is assumed to have an infinite horizontal extent, moves at some prescribed velocity into a passive surrounding gas. The sheet’s thickness is assumed much smaller than the horizontal scale of the fluid motion. By considering a system that is symmetric with respect to the horizontal planes, long scale asymptotics are used to reduce the full governing equations in three dimensions to a set of three coupled nonlinear partial differential equations for the horizontal components of the velocity field and the height of the interface profile. The interfacial conditions consisting of the kinematic and normal stress balance are incorporated into these evolution equations. Investigations are carried out as function of the sole dimensionless parameter, namely the Weber number. A small amplitude stability analysis around the planar gas–liquid interface reveals that wave patterns in the form of traveling plane waves occur subcritically, and are therefore unstable. The reduced evolution equations are solved numerically for fixed values of the Weber number. Since the reduced system of equations is homogeneous, the wave motion is generated by initial conditions. Five initial conditions have been imposed: one-dimensional rolls, two-dimensional squares, two-dimensional hexagons, two-dimensional ridges, and smooth peaks. The ensuing evolution of the liquid sheet’s shape and corresponding flow fields are described by illustrations of the changes in the sheet’s morphology with time.  相似文献   

7.
A two-phase flow model, which solves the flow in the air and water simultaneously, has been employed to investigate both spilling and plunging breakers in the surf zone with a focus during wave breaking. The model is based on the Reynolds-averaged Navier–Stokes equations with the k–?k? turbulence model. The governing equations are solved using the finite volume method, with the partial cell treatment being implemented in a staggered Cartesian grid to deal with complex geometries. The PISO algorithm is utilised for the pressure–velocity coupling and the air–water interface is modelled by the interface capturing method via a high-resolution volume of fluid scheme. Numerical results are compared with experimental measurements and other numerical studies in terms of water surface elevations, mean flow and turbulence intensity, in which satisfactory agreement is obtained. In addition, water surface profiles, velocity and vorticity fields during wave breaking are also presented and discussed. It is shown that the present model is capable of simulating the wave overturning, air entrainment and splash-up processes.  相似文献   

8.
Computational fluid dynamics (CFD) provides a method for investigating the highly complex fluid flow in mechanically stirred tanks. Although there are quite a number of papers in the literature describing CFD methods for modelling stirred tanks, most only consider single-phase flow. However, multiphase mixtures occur very frequently in the process industries, and these are more complex situations for which modelling is not as well developed. This paper reports on progress in developing CFD simulations of gas–liquid mixing in a baffled stirred tank. The model is three-dimensional and the impeller region is explicitly included using a Multiple Frames of Reference method to account for the relative movement between impeller and baffles. Fluid flow is calculated with a turbulent two-fluid model using a finite-volume method. Several alternative treatments of the multiphase equations are possible, including various expressions for drag and dispersion forces, and a number of these have been tested. Variation in bubble size due to coalescence and break-up is also modelled. The CFD simulation method has been used to model a gas-sparged tank equipped with a Rushton turbine, and simulation results are compared with experimental data. Results to date show the correct pattern of gas distribution and the correct trends in local bubble size in the tank. Further work is needed to improve the quantitative agreement with experimental data.  相似文献   

9.
In the present work, experimental and numerical studies for the hydrodynamics in a gas–solid tapered fluidized bed have been carried out. The experimental results obtained by carrying out experiments in a tapered fluidized bed for glass bead (spherical) of 2.0 mm and dolomite (non-spherical particles) of 2.215 mm in diameter, were compared with the computational fluid dynamics (CFD) simulation results, using a commercial CFD software package, Fluent. The gas–solid flow was simulated using the Eulerian–Eulerian model and applying the kinetic theory of granular flow for solid particles. The Gidaspow drag model was used to calculate the gas–solid momentum exchange coefficients. Pressure drops predicted by the CFD simulations agreed reasonably well with experimental measurements for both types (spherical and non-spherical) of particles. Good agreement was also obtained between experimental and CFD predicted bed expansion ratios for both types of particles. Present study provides a useful basis for further works on the CFD of tapered fluidized bed.  相似文献   

10.
Computational fluid dynamics (CFD) is used to simulate the behavior of two phase gas solid in a fluid catalytic cracking (FCC) riser. Gas and particle phases are considered as separate fully interpenetrating continuous media within each control volume. Each phase described in terms of its own separate mass and momentum conservation equations. Simple k–epsilon (kg?g) turbulence model is used for the gas phase and the solid phase is handled with the kinetic theory of granular flows. Source terms are used to account for the influence of hydrodynamic drag on the production, dissipation and exchange of turbulent kinetic energy between the phases. For the particles partial slip condition is considered at the wall.  相似文献   

11.
The performance of flash furnace burners can be evaluated quickly and efficiently using CFD modelling. Gas flows are modelled using the conventional Eulerian approach, while Lagrangian particle tracking is used to model the flow of solid feed through the burner and into the reaction shaft. A composite particle model has been developed that considers the solid feed to be made up of single particles containing appropriate quantities of concentrate, flux and dust. Solid fuels (such as coal) can also be included in the composite particle. Reactions between the solids and gas are then modelled using standard heat and mass transfer relationships. Results from the modelling process are shown for BHP-Billiton’s Olympic Dam copper flash smelter with the burner that was used from 1998–2003. Flow patterns, temperature and gas composition distributions, particle dispersion and residence time, and overall extent of sulphur removal are predicted and used to evaluate furnace performance. However, results are sensitive to the assumed size of the composite particles, and plant measurements are required to determine the appropriate composite particle size to predict quantitative data.  相似文献   

12.
The present paper introduces a new interfacial marker-level set method (IMLS) which is coupled with the Reynolds averaged Navier–Stokes (RANS) equations to predict the turbulence-induced interfacial instability of two-phase flow with moving interface. The governing RANS equations for time-dependent, axisymmetric and incompressible two-phase flow are described in both phases and solved separately using the control volume approach on structured cell-centered collocated grids. The transition from one phase to another is performed through a consistent balance of kinematic and dynamic conditions on the interface separating the two phases. The topological changes of the interface are predicted by applying the level set approach. By fitting a number of interfacial markers on the intersection points of the computational grids with the interface, the interfacial stresses and consequently, the interfacial driving forces are easily estimated. Moreover, the normal interface velocity, calculated at the interfacial markers positions, can be extended to the higher dimensional level set function and used for the interface advection process. The performance of linear and non-linear two-equation kε turbulence models is investigated in the context of the considered two-phase flow impinging problem, where a turbulent gas jet impinging on a free liquid surface. The numerical results obtained are evaluated through the comparison with the available experimental and analytical data. The nonlinear turbulence model showed superiority in predicting the interface deformation resulting from turbulent normal stresses. However, both linear and nonlinear turbulence models showed a similar behavior in predicting the interface deformation due to turbulent tangential stresses. In general, the developed IMLS numerical method showed a remarkable capability in predicting the dynamics of the considered two-phase immiscible flow problems and therefore it can be applied to quite a number of interface stability problems.  相似文献   

13.
The mathematical models of gas–liquid two-phase flow are introduced, in which the multi-mode eXtended Pom–Pom (XPP) model is selected to predict the viscoelastic behavior of polymer melt. The gas-penetration process is simulated using Level Set/SIMPLEC methods, which can capture the moving interfaces at different time, including the gas–melt interface and the melt front. The physical features such as velocity, temperature and elasticity are described at different time. The influences of gas delay time and injection pressure on gas-penetration time and penetration length are analyzed. The numerical results show that the Level Set/SIMPLEC methods can precisely trace the two moving interfaces in gas-penetration process, the fractional coverage increases at very low Deborah numbers, while at higher Deborah numbers the fractional coverage decreases, and the penetration length is affected significantly by gas delay time and injection pressure.  相似文献   

14.
The Reynolds-averaged Navier–Stokes (RANS) equations were solved along with turbulence models, namely kε, kω, Reynolds stress models (RSM), and filtered Navier–Stokes equations along with Large Eddy Simulation (LES) to study the fully-developed turbulent flows in circular pipes roughened by repeated square ribs with various spacings. Solutions of these flows were obtained using the commercial computational fluid dynamics (CFD) software Fluent. The numerical results were validated against experimental measurements and other numerical data published in literature. The performance of the turbulence models was compared and discussed. All the RANS models and LES model were observed to perform equally well in predicting the time-averaged flow statistics. However no instantaneous information can be obtained from the RANS results. Therefore, when a rough overview of the flow process in a pipe roughened by repeated ribs is needed, any one of the RANS models can be of value. On the other hand, the instantaneous as well as time-averaged flows could be studied with more insight using LES, albeit at a cost of CPU effort at least one order higher.  相似文献   

15.
In this work, the problems dealing with unsteady unidirectional flows of an Oldroyd-B fluid in a porous medium are investigated. By using modified Darcy's law of an Oldroyd-B fluid, the equations governing the flow are modelled. Employing Fourier sine transform, the analytic solutions of the modelled equations are developed for the following two problems: (i) constant accelerated flow, (ii) variable accelerated flow. Explicit expressions for the velocity field and adequate tangential stress are obtained in each case. The solutions for Newtonian, second grade and Maxwell fluids in a porous medium appear as the limiting cases of the present analysis.  相似文献   

16.
A three-dimensional CFD model was developed in this work to simulate hydrodynamic characteristics of a gas–liquid two-phase stirred tank with two six-bladed turbines and four baffles, coupling of the Multiple Size Group model to determine bubble size distribution. Important hydrodynamic parameters of the multi-phase system such as volume-averaged overall and time-averaged local gas holdups and axial liquid velocities along time and transversal courses were simulated and analyzed in detail, under varied operating conditions (inlet air flow rate and impeller rotation speed). Model predictions of local transient gas holdup and liquid velocity distributions on vertical and horizontal sections of the tank were also carried out. The overall flow patterns were discussed in detail to assess the mixing. Bubble size distributions were further predicted to reveal the unique properties of gas phase. Experimental measurements of overall gas holdups and local axial liquid velocities were used to validate the developed model.  相似文献   

17.
A new unsteady cavitation event tracking model is developed for predicting vapor dynamics occurring in multi-dimensional incompressible flows. The procedure solves incompressible Navier–Stokes equations for the liquid phase supplemented with an additional vapor transport equation for the vapor phase. The novel cavitation-induced-momentum-defect (CIMD) correction methodology developed in this study accounts for cavitation inception and collapse events as relevant momentum-source terms in the liquid phase momentum equations. The model tracks cavitation zones and applies compressibility effects, employing homogeneous equilibrium model (HEM) assumptions, in constructing the source term of the vapor transport model. Effects of vapor phase accumulation and diffusion are incorporated by detailed relaxation models. A modified RNG kε model, including the effects of compressibility in the vapor regions, is employed for modeling turbulence effects. Numerical simulations are carried out using a finite volume methodology available within the framework of commercial CFD software code Fluent v.6.2. Simulation results are in good qualitative agreement with experiments for unsteady cloud cavitation behavior in planar nozzle flows. Multitude of mechanisms such as formation of vortex cavities, vapor cluster shedding and coalescence, cavity pinch off are sharply captured by the CIMD approach. Our results indicate the profound influence of re-entrant jet motion and adverse pressure gradients on the cavitation dynamics.  相似文献   

18.
In this work, we propose a diffusion–convection–reaction methodology to gain further insights into the heterogeneous multiphase flow of trickle beds. Our case-study encompasses a multi-fluid model embedded within an interstitial framework on the numerical simulation of continuous catalytic wet oxidation of hazardous compounds. First, with the proviso that phase holdup, pressure drop, and liquid distribution are fundamental criteria for the efficient design of trickle beds, the multiphase flow constitutive equations have been developed and solved by the conservative unstructured finite volume method. Second, several numerical variables were parametrically optimized based on the application of different under-relaxation parameters, mesh densities, and time stepping strategies. The segregated solver has been found to reveal good properties in terms of convergence and stability criteria, which endorsed the further corroboration. Finally, this theoretical probing-sensing scheme enabled the characterization of liquid flow texture accomplished by three-dimensional flow patterns exposing their deviation from ideal plug flow. The diffusion–convection–reaction framework coupled within a CFD model can then be further exploited on the simulation of complex multiphase reactive flows with adjustable parameters.  相似文献   

19.
Based on the fractional volume of fluid (VOF), a pure Eulerian model for defining and capturing the gas/liquid interface is developed in this paper. This model can describe gas/liquid interface in high refinement, which is better than the original VOF methodology. To validate the proposed model and the algorithm, the computational code is employed to predict the flow performance in a cylindrical swirl injector under cold-flow condition, and the predicted results agree well with experimental measurements. Furthermore, the proposed model is used to simulate gas-liquid reacting flows inside a gas/liquid coaxial swirl injector operating in a hot environment. The turbulent combustion process is simulated with the kεfg model. The numerical simulation is carried out under actual operating condition of the coaxial injector. The injector performances, such as liquid film thickness, liquid film injection velocity, spray angle, pressure drop, are obtained based on the detailed information of the internal flow field. The predicted results also show that droplets are shed from the liquid film in the recess cup of the coaxial injector because of the large velocity gradient between the gas and liquid streams, and a burning area, which is characterized by high temperature, is present inside the injector.  相似文献   

20.
A perturbation method based on a long wavelength approximation is used to obtain the leading order equations governing the fluid dynamics of laminar, annular, round and compound liquid jets and liquid films on convex and concave cylindrical surfaces. An approximate, integral balance method is also used to determine the inviscid core and the thickness of the boundary layers of annular liquid jets near the nozzle exit. The steady state equations are transformed into parabolic ones by means of the von Mises transformation and solved in an adaptive, staggered grid to determine the axial velocity distribution and the location of the free surfaces. It is shown that, for free surface flows subject to inertia, gravity and surface tension, there is a contraction near the nozzle which increases as the Reynolds and Froude numbers are decreased, and is nearly independent of the Weber number for Weber numbers larger than about one hundred. It is also shown that this contraction depends on the flow considered, and is larger for films on convex surfaces. It is also shown that, for round jets, the acceleration of the jet's free surface is larger than that of the jet's centerline, although, sufficiently far from the nozzle exit, the axial velocity is uniform across the jet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号