首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anharmonic vibrational frequencies of FHF(-) were computed by the vibrational self-consistent-field, configuration-interaction, and second-order perturbation methods with a multiresolution composite potential energy surface generated by the electronic coupled-cluster method with various basis sets. Anharmonic vibrational averaging was performed for the bond length and nuclear magnetic resonance indirect spin-spin coupling constants, where the latter computed by the equation-of-motion coupled-cluster method. The calculations placed the vibrational frequencies at 580 (nu(1)), 1292 (nu(2)), 1313 (nu(3)), 1837 (nu(1) + nu(3)), and 1864 cm(-1) (nu(1) + nu(2)), the zero-point H-F bond length (r(0)) at 1.1539 A, the zero-point one-bond spin-spin coupling constant [(1)J(0)(HF)] at 124 Hz, and the bond dissociation energy (D(0)) at 43.3 kcal/mol. They agreed excellently with the corresponding experimental values: nu(1) = 583 cm(-1), nu(2) = 1286 cm(-1), nu(3) = 1331 cm(-1), nu(1) + nu(3) = 1849 cm(-1), nu(1) + nu(2) = 1858 cm(-1), r(0) = 1.1522 A, (1)J(0)(HF) = 124+/-3 Hz, and D(0) = 44.4+/-1.6 kcal/mol. The vibrationally averaged bond lengths matched closely the experimental values of five excited vibrational states, furnishing a highly dependable basis for correct band assignments. An adiabatic separation of high- (nu(3)) and low-frequency (nu(1)) stretching modes was examined and found to explain semiquantitatively the appearance of a nu(1) progression on nu(3). Our calculations predicted a value of 186 Hz for experimentally inaccessible (2)J(0)(FF).  相似文献   

2.
The mode specificity of proton-transfer dynamics in the ground electronic state (X (1)A(1)) of tropolone has been explored at near-rotational resolution by implementing a fully coherent variant of stimulated emission pumping within the framework of two-color resonant four-wave mixing spectroscopy. Three low-lying (E(vib) approximately 550-750 cm(-1)) vibrational features, assigned to nu(30)(a(1)), nu(32)(b(2)), and nu(31)nu(38)(a(1)), have been interrogated under ambient, bulk-gas conditions, with term energies determined for the symmetric and antisymmetric (tunneling) components of each enabling the attendant tunneling-induced bifurcations of 1.070(9), 0.61(3), and 0.07(2) cm(-1) to be extracted. The dependence of tunneling rate (or hydron migration efficiency) on vibrational motion is discussed in terms of corresponding atomic displacements and permutation-inversion symmetries for the tropolone skeleton.  相似文献   

3.
Vacuum ultraviolet pulsed-field ionization-photoelectron (PFI-PE) spectra of H(2)S have been recorded at PFI-PE resolutions of 0.6-1.0 meV in the energy range of 10-17 eV using high-resolution synchrotron radiation. The PFI-PE spectrum, which covers the formation of the valence electronic states H(2)S(+) (X (2)B(1), A (2)A(1), and B (2)B(2)), is compared to the recent high-resolution He I photoelectron spectra of H(2)S obtained by Baltzer et al. [Chem. Phys. 195, 403 (1995)]. In addition to the overwhelmingly dominated origin vibrational band, the PFI-PE spectrum for H(2)S(+)(X (2)B(1)) is found to exhibit weak vibrational progressions due to excitation of the combination bands in the nu(1) (+) symmetric stretching and nu(2) (+) bending modes. While the ionization energy (IE) for H(2)S(+)(X (2)B(1)) obtained here is in accord with values determined in previously laser PFI-PE measurements, the observation of a new PFI-PE band at 12.642+/-0.001 eV suggests that the IE for H(2)S(+)(A (2)A(1)) may be 0.12 eV lower than that reported in the He I study. The simulation of rotational structures resolved in PFI-PE bands shows that the formation of H(2)S(+)(X (2)B(1)) and H(2)S(+)(A (2)A(1)) from photoionization of H(2)S(X (1)A(1)) is dominated by type-C and type-B transitions, respectively. This observation is consistent with predictions of the multichannel quantum defect theory. The small changes in rotational angular momentum observed are consistent with the dominant atomiclike character of the 2b(1) and 5a(1) molecular orbitals of H(2)S. The PFI-PE measurement has revealed perturbations of the (0, 6, 0) K(+)=3 and (0, 6, 0) K(+)=4 bands of H(2)S(+)(A (2)A(1)). Interpreting that these perturbations arise from Renner-Teller interactions at energies close to the common barriers to linearity of the H(2)S(+) (X (2)B(1) and A (2)A(1)) states, we have deduced a barrier of 23,209 cm(-1) for H(2)S(+)(X (2)B(1)) and 5668 cm(-1) for H(2)S(+)(A (2)A(1)). The barrier of 23 209 cm(-1) for H(2)S(+)(X (2)B(1)) is found to be in excellent agreement with the results of previous studies. The vibrational PFI-PE bands for H(2)S(+)(B (2)B(2)) are broad, indicative of the predissociative nature of this state.  相似文献   

4.
The detailed reaction dynamics of CH(3)I photodissociation at 304 nm were studied by using high-resolution long time-delayed core-sampling photofragment translation spectroscopy. The vibrational state distributions of the photofragment, i.e., CH(3), are directly resolved due to the high kinetic resolution of this experiment for the first time. CH(3) radicals produced from I((3)Q(0+)), I((1)Q(1) <--( 3)Q(0+)), and I((3)Q(1)) channels are populated in different vibrational state distributions. The I((3)Q(0+)) and I((3)Q(1)) channels show only progressions in the nu2'(a2") umbrella bending mode, and the I((1)Q(1) <-- (3)Q(0+)) channel shows both progression in the nu2' umbrella bending mode and a small amount of excitation in the nu1'(a1') C-H stretching mode. The photodissociation processes from the vibrational hot band of CH(3)I (upsilon3 = 1, upsilon3 = 2) were also detected, primarily because of the absorption probability from the vibrational excited states, i.e., hot bands are relatively enhanced. Photofragments from the hot bands of CH(3)I show a cold vibrational distribution compared to that from the vibrational ground state of CH(3)I. The I* quantum yield and the curve crossing possibility were also studied for the ground vibrational state of CH(3)I. The potential energy at the curve crossing point was calculated to be 32 790 cm(-1) by using the one-dimensional Landau-Zener model.  相似文献   

5.
The fast nonradiative decay dynamics of the lowest two excited pipi(*) electronic states (S(2) and S(3)) of hexafluorobenzene have been investigated by using femtosecond time-resolved time-of-flight mass spectrometry. The molecules were excited at wavelengths between 265 nm > or = lambda(pump) > or = 217 nm and probed by four- and three-photon ionization at lambda(probe)=775 nm. The observed temporal profiles exhibit two exponential decay times (tau(1)=0.54-0.1 ps and tau(2)=493-4.67 ps, depending on the excitation wavelength) and a superimposed coherent oscillation with vibrational frequency nu(osc)=97 cm(-1) and damping time tau(D) that is two to three times longer than the respective tau(1). The first decay component (tau(1)) is assigned to rapid radiationless transfer from the excited optically bright pipi(*) electronic state (S(2) or S(3), respectively) through a conical intersection (CI) to the lower-lying optically dark pisigma(*) state (S(1)) of the molecule; the second component (tau(2)) is attributed to the subsequent slower relaxation from the S(1) state back to the electronic ground state (S(0)). tau(2) dramatically decreases with increasing vibronic excitation energy up to the CI connecting the pisigma(*) with the S(0) state. The coherent oscillation is identified as nuclear motion along the out-of-plane vibration nu(16a) (notation as for benzene), which has e(2u) symmetry and acts as coupling mode between the pipi(*) and pisigma(*) states.  相似文献   

6.
By preparing ethylene [C2H4(X1Ag)] in selected rotational levels of the nu11(b1u), nu2+nu12(b1u), or nu9(b2u) vibrational state with infrared (IR) laser photoexcitation prior to vacuum ultraviolet (VUV) laser photoionization, we have recorded rotationally resolved pulsed field ionization-photoelectron (PFI-PE) spectra for C2H4+(X2B3u) in the energy region of 0-3000 cm(-1) above the ionization energy (IE) of C2H4(X1Ag). Here, nu2(ag), nu9(b2u), nu11(b1u), and nu12(b1u) represent the C-C stretching, CH2 stretching, CH2 stretching, and CH2 bending modes of C2H4(X1Ag), respectively. The fully rovibrationally resolved spectra have allowed unambiguous symmetry assignments of the observed vibrational bands, which in turn have provided valuable information on the photoionization dynamics of C2H4. The IR-VUV photoionization of C2H4(X1Ag) via the nu11(b1u) or nu2+nu12(b1u) vibrational states is found to predominantly produce vibrational states of C2H4+(X2B3u) with b1u symmetry, which cannot be observed in single-photon VUV-PFI-PE measurements of C2H4(X1Ag). The analysis of the observed IR-VUV-PFI-PE bands has provided the IE(C2H4) = 84,790.2(2) cm(-1) and accurate vibrational frequencies for the nu4+(au)[84.1(2) cm(-1)], nu12+(b1u)[1411.7(2) cm(-1)], nu4+ +nu12+(b1g)[1482.5(2) cm(-1)], nu2+(ag)[1488.3(2) cm(-1)], nu2+ + nu4+(au)[1559.2(2) cm(-1)], 2nu4+ + nu12 +(b1u)[1848.5(2) cm(-1)], 4nu4+ + nu12 +(b1u)[2558.8(2) cm(-1)], nu2+ + nu12 +(b1u)[2872.7(2) cm(-1)], and nu11+(b1u)[2978.7(2) cm(-1)] vibrational states of C2H4+(X2B3u), where nu4+ is the ion torsional state. The IE(C2H4) and the nu4+(au), nu2+(ag), and nu2+ + nu4+ (au) frequencies are in excellent accord with those obtained in previous single-photon VUV-PFI-PE measurements. The other ion vibrational frequencies represent new experimental determinations. We have also performed high-level ab initio anharmonic vibrational frequency calculations for C2H4(X1Ag) and C2H4+(X2B3u) at the CCSD(T)/aug-cc-pVQZ level for guidance in the assignment of the IR-VUV-PFI-PE spectra. All theoretical vibrational frequencies for the neutral and ion, except the ion torsional frequency, are found to agree with experimental vibrational frequencies to better than 1%.  相似文献   

7.
The S(1)<-->S(0) vibronic spectra of supersonic jet-cooled 2-pyridone [pyridin-2-one (2PY)] and its N-H deuterated isotopomer (d-2PY) have been recorded by two-color resonant two-photon ionization, laser-induced fluorescence and emission, and fluorescence depletion spectroscopies. By combining these methods, the B origin of 2PY at 0(0) (0)+98 cm(-1) and the bands at +218 and +252 cm(-1) are identified as overtones of the S(1) state out-of-plane vibrations nu(1) (') and nu(2) ('), as are the analogous bands of d-2PY. Anharmonic double-minimum potentials are derived for the respective out-of-plane coordinates that predict further nu(1) (') and nu(2) (') overtones and combinations, reproducing approximately 80% of the vibronic bands up to 600 cm(-1) above the 0(0) (0) band. The fluorescence spectra excited at the electronic origins and the nu(1) (') and nu(2) (') out-of-plane overtone levels confirm these assignments. The S(1) nonplanar minima and S(1)<--S(0) out-of-plane progressions are in agreement with the determination of nonplanar vibrationally averaged geometries for the 0(0) (0) and 0(0) (0)+98 cm(-1) upper states by Held et al. [J. Chem. Phys. 95, 8732 (1991)]. The fluorescence lifetimes of the S(1) state vibrations show strong mode dependence: Those of the out-of-plane levels decrease rapidly above 200 cm(-1) excess vibrational energy, while the in-plane vibrations nu(5) ('), nu(8) ('), and nu(9) (') have longer lifetimes, although they are above or interspersed with the "dark" out-of-plane states. This is interpreted in terms of an S(1) (') state reaction with a low barrier towards a conical intersection with a prefulvenic geometry. Out-of-plane vibrational states can directly surmount this barrier, whereas in-plane vibrations are much less efficient in this respect. Analysis of the fluorescence spectra allows to identify nine in-plane S(0) (') state fundamentals, overtones of the S(0) state nu(1) (") and nu(2) (") out-of-plane vibrations, and >30 other overtones and combination bands. The B3LYP6-311++G(d,p) calculated anharmonic wave numbers are in very good agreement with the observed fundamentals, overtones, and combinations, with a deviation Delta(rms)=1.3%.  相似文献   

8.
The laser-induced fluorescence (LIF) spectra, both the fluorescence excitation spectra (FES) and single vibrational level fluorescence spectra (SVLF) from several different vibronic states, along with the ultraviolet (UV) absorption spectra of 1,4-benzodioxan have been recorded and analyzed. A detailed energy map has been constructed for four low-frequency vibrations and their combinations for both the S(0) and S(1)(pi,pi) electronic states. These are nu(48) (ring-bending), nu(25) (ring-twisting), nu(47) (ring-flapping), and nu(24) (skeletal-twisting). Both the experimental and ab initio calculations show the molecule to be twisted in both the S(0) and S(1)(pi,pi) states with high barriers to planarity. The experimentally determined ring-twisting quantum states, which are confined to the lower regions of the potential energy surface, were used to calculate one-dimensional potential functions in terms of the twisting coordinates, and the extrapolated barriers were estimated to be 5700 and 4200 cm(-1) for the S(0) and S(1) states, respectively. Two-dimensional calculations, which included the interactions with the bending modes, gave values of 3906 and 1744 cm(-1), respectively. The S(0) value compares favorably with the ab initio value of 4095 cm(-1).  相似文献   

9.
The structural changes that occur when [Cu(pqx)(PPh(3))(2)](+) (pqx is 2-(2'-pyridyl)quinoxaline) undergoes excitation through a metal-to-ligand charge-transfer (MLCT) transition are investigated using resonance Raman excitation profiles coupled with density functional theory (DFT). The DFT calculations predict bond lengths to within 3 pm and absolute deviations of 7 cm(-1) for the vibrational frequencies of [Cu(pqx)(PPh(3))(2)](+). TD-DFT calculations of oscillator strengths (f = 0.089) and band positions (419 nm) showed close agreement with experiment (f = 0.07, 431 nm). Resonance Raman spectra show the 527 cm(-1) (nu(29)) and 1476 cm(-1) (nu(75)) modes undergo the largest dimensionless displacement (Delta = 1.5 and 1.1, respectively) following photoexcitation into the MLCT Franck-Condon region. The solvent couples strongly to the MLCT transition and resonance Raman intensity analysis (RRIA) gives a solvent reorganization energy of 3400 cm(-1) for dichloromethane and 2800 cm(-1) for chloroform solutions. A large inner-sphere reorganization of 3430 cm(-1) in dichloromethane solution (3520 cm(-1) in chloroform solution) was found for [Cu(pqx)(PPh(3))(2)](+), indicating that the molecule as a whole undergoes significant distortion following MLCT excitation.  相似文献   

10.
The Cuban chromites with a spinel structure, FeCr2O4 have been studied using optical absorption and EPR spectroscopy. The spectral features in the electronic spectra are used to map the octahedral and tetrahedral co-ordinated cations. Bands due Cr3+ and Fe3+ ions could be distinguished from UV-vis spectrum. Chromite spectrum shows two spin allowed bands at 17,390 and 23,810 cm(-1) due to Cr3+ in octahedral field and they are assigned to 4A2g(F) --> 4T2g(F) and 4A2g(F) --> 4T1g(F) transitions. This is in conformity with the broad resonance of Cr3+ observed from EPR spectrum at g = 1.903 and a weak signal at g = 3.861 confirms Fe3+ impurity in the mineral. Bands of Fe3+ ion in the optical spectrum at 13,700, 18,870 and 28,570 cm(-1) are attributed to 6A1g(S) --> 4T1g(G), 6A1g(S) --> 4T2g(G) and 6A1g(S) --> 4T2g(P) transitions, respectively. Near-IR reflectance spectroscopy has been used effectively to show intense absorption bands caused by electronic spin allowed d-d transitions of Fe2+ in tetrahedral symmetry, in the region 5000-4000 cm(-1). The high frequency region (7500-6500 cm(-1)) is attributed to the overtones of hydroxyl stretching modes. Correlation between Raman spectral features and mineral chemistry are used to interpret the Raman data. The Raman spectrum of chromite shows three bands in the CrO stretching region at 730, 560 and 445 cm(-1). The most intense peak at 730 cm(-1) is identified as symmetric stretching vibrational mode, A1g(nu1) and the other two minor peaks at 560 and 445 cm(-1) are assigned to F2g(nu4) and E(g)(nu2) modes, respectively. Cation substitution in chromite results various changes both in Raman and IR spectra. In the low-wavenumber region of Raman spectrum a significant band at 250 cm(-1) with a component at 218 cm(-1) is attributed F2g(nu3) mode. The minor peaks at 195, 175, 160 cm(-1) might be due to E(g) and F2g symmetries. Broadening of the peak of A1g mode and shifting of the peak to higher wavenumber observed as a result of increasing the proportion of Al3+O6. The presence of water in the mineral shows bands in the IR spectrum at 3550, 3425, 3295, 1630 and 1455 cm(-1). The vibrational spectrum of chromite gives raise to four frequencies at 985, 770, 710 and 650 cm(-1). The first two frequencies nu1 and nu2 are related to the lattice vibrations of octahedral groups. Due to the influence of tetrahedral bivalent cation, vibrational interactions occur between nu3 and nu4 and hence the low frequency bands, nu3 and nu4 correspond to complex vibrations involving both octahedral and tetrahedral cations simultaneously. Cr3+ in Cuban natural chromites has highest CFSE (20,868 cm(-1)) when compared to other oxide minerals.  相似文献   

11.
The photodissociation of CF(3)I at 304 nm has been studied using long time-delayed core-sampling photofragment translational spectroscopy. Due to its capability of detecting the kinetic energy distribution of iodine fragments with high resolution, it is able to directly assign the vibrational state distribution of CF(3) fragments. The vibrational state distributions of CF(3) fragments in the I(*)((2)P(12)) channel, i.e., (3)Q(0+) state, have a propensity of the nu(2) (') umbrella mode with a maximum distribution at the vibrational ground state. For the I((2)P(32)) channel, i.e., (1)Q(1)<--(3)Q(0+), the excitation of the nu(2) (') umbrella mode accounts for the majority of the vibrational excitation of the CF(3) fragments. The 1 nu(1) (') (symmetric CF stretch) +nnu(2) (') combination modes, which are associated with the major progression of the nu(2) (') umbrella mode, are observed for the photodissociation of CF(3)I at the I channel, i.e., (3)Q(1) state. The bond dissociation energy of the CI bond of CF(3)I is determined to be D(0)(CF(3)-I)相似文献   

12.
We report the first rotationally resolved spectroscopic studies on PH3+(X2A2") using zero kinetic energy photoelectron spectroscopy and coherent VUV radiation. The spectra about 8000 cm(-1) above the ground vibrational state of PH3+(X2A2") have been recorded. We observed the vibrational energy level splittings of PH3+(X2A2") due to the tunneling effect in the inversion (symmetric bending) vibration (nu2+). The energy splitting for the first inversion vibrational state (0+/0-) is 5.8 cm(-1). The inversion vibrational energy levels, rotational constants, and adiabatic ionization energies (IEs) for nu2+ = 0-16 have been determined. The bond angles between the neighboring P-H bonds and the P-H bond lengths are also obtained using the experimentally determined rotational constants. With the increasing of the inversion vibrational excitations (nu2+), the bond lengths (P-H) increase a little and the bond angles (H-P-H) decrease a lot. The inversion vibrational energy levels have also been calculated by using one dimensional potential model and the results are in good agreement with the experimental data for the first several vibrational levels. In addition to inversion vibration, we also observed firstly the other two vibrational modes: the symmetric P-H stretching vibration (nu1+) and the degenerate bending vibration (nu4+). The fundamental frequencies for nu1+ and nu4+ are 2461.6 (+/-2) and 1043.9 (+/-2) cm(-1), respectively. The first IE for PH3 was determined as 79670.9 (+/-1) cm(-1).  相似文献   

13.
The vibrational spectra of linear AlC(3) and AlC(3)Al, formed by trapping the products of the dual laser evaporation of aluminum and carbon rods in solid Ar at approximately 10 K, were observed. Fourier transform infrared (FTIR) measurements of (13)C isotopic shifts are in good agreement with the predictions of density functional theory (DFT) B3LYP6-311+G(3df) calculations, enabling the first assignments of the nu(3)(sigma(u)) and nu(4)(sigma(u)) fundamentals of ((3)Sigma(g) (+)) linear AlC(3)Al at 1624.0 and 528.3 cm(-1), respectively, and the nu(2)(sigma) vibrational fundamental of ((2)Pi) linear AlC(3) at 1210.9 cm(-1).  相似文献   

14.
A double minimum six-dimensional potential energy surface (PES) is determined in symmetry coordinates for the most stable rhombic (D2h) B4 isomer in its 1Ag electronic ground state by fitting to energies calculated ab initio. The PES exhibits a barrier to the D4h square structure of 255 cm(-1). The vibrational levels (J=0) are calculated variationally using an approach which involves the Watson kinetic energy operator expressed in normal coordinates. The pattern of about 65 vibrational levels up to 1600 cm(-1) for all stable isotopomers is analyzed. Analogous to the inversion in ammonia-like molecules, the rhombus rearrangements lead to splittings of the vibrational levels. In B4 it is the B1g (D4h) mode which distorts the square molecule to its planar rhombic form. The anharmonic fundamental vibrational transitions of 11B4 are calculated to be (splittings in parentheses): G(0)=2352(22) cm(-1), nu1(A1g)=1136(24) cm(-1), nu2(B1g)=209(144) cm(-1), nu3(B2g)=1198(19) cm(-1), nu4(B2u)=271(24) cm(-1), and nu5(Eu)=1030(166) cm(-1) (D4h notation). Their variations in all stable isotopomers were investigated. Due to the presence of strong anharmonic resonances between the B1g in-plane distortion and the B2u out-of-plane bending modes, the higher overtones and combination levels are difficult to assign unequivocally.  相似文献   

15.
Infrared action spectroscopy and dissociation dynamics of the HOOO radical   总被引:1,自引:0,他引:1  
The HOOO radical has long been postulated to be an important intermediate in atmospherically relevant reactions and was recently deemed a significant sink for OH radicals in the tropopause region. In the present experiments, HOOO radicals are generated in a pulsed supersonic expansion by the association of O(2) and photolytically generated OH radicals, and the spectral signature and vibrational predissociation dynamics are investigated via IR action spectroscopy, an IR-UV double resonance technique. Rotationally resolved IR action spectra are obtained for trans-HOOO in the fundamental (nu(OH)) and overtone (2nu(OH)) OH stretching regions at 3569.30 and 6974.18 cm(-1), respectively. The IR spectra exhibit homogeneous line broadening, characteristic of a approximately 26-ps lifetime, which is attributed to intramolecular vibrational redistribution and/or predissociation to OH and O2 products. In addition, an unstructured feature is observed in both the OH fundamental and overtone regions of HOOO, which is likely due to cis-HOOO. The nascent OH X(2)Pi, v = 0 or v = 1, products following vibrational predissociation of HOOO, nu(OH) or 2nu(OH), respectively, have been investigated using saturated laser-induced fluorescence measurements. A distinct preference for population of Pi(A') Lambda-doublets in OH was observed and is indicative of a planar dissociation of trans-HOOO in which the symmetry of the bonding orbital is maintained.  相似文献   

16.
Harmonic vibrational frequencies and vibronic intensities in the first S(0)-->S(1) (pipi( *)) absorption band of free-base porphin (H(2) P) are investigated by hybrid density functional theory (DFT) with the standard B3LYP functional. The S(0)-S(1) transition probability is calculated using time-dependent DFT with account of Franck-Condon (FC) and Herzberg-Teller (HT) contributions to the electric-dipole transition moments including displacements along all 108 vibrational modes. Two weak wide bands observed in the gas phase absorption spectra of the H(2) P molecule at 626 and 576 nm are interpreted as the 0-0 band of the X(1) A(g)-->1B(3u) transition and the 0-1 band with largest contributions from the nu(10)(a(g))=1610 cm(-1) and nu(19)(b(1g))=1600 cm(-1) modes, respectively, in agreement with previous tentative assignments. Both bands are induced by the HT mechanism, while the FC contributions are negligible. A number of fine structure bands, including combination of two vibrational quanta, are obtained and compared with available spectra from supersonic jet and Shpolskij matrices. Both absorption and fluorescence spectra are interpreted on ground of the linear coupling model and a good fulfillment of the mirror-symmetry rule.  相似文献   

17.
State-resolved reactions of CH3D molecules containing both C-H and C-D stretching excitation with Cl atoms provide new vibrational spectroscopy and probe the consumption and disposal of vibrational energy in the reactions. The vibrational action spectra have three different components, the combination of the C-H symmetric stretch and the C-D stretch (nu1 + nu2), the combination of the C-D stretch and the C-H antisymmetric stretch (nu2 + nu4), and the combination of the C-D stretch and the first overtone of the CH3 bend (nu2 + 2nu5). The simulation for the previously unanalyzed (nu2 + nu4) state yields a band center of nu0 = 5215.3 cm(-1), rotational constants of A = 5.223 cm(-1) and B = 3.803 cm(-1), and a Coriolis coupling constant of zeta = 0.084. The reaction dynamics largely follow a spectator picture in which the surviving bond retains its initial vibrational excitation. In at least 80% of the reactive encounters of vibrationally excited CH3D with Cl, cleavage of the C-H bond produces CH2D radicals with an excited C-D stretch, and cleavage of the C-D bond produces CH3 radicals with an excited C-H stretch. Deviations from the spectator picture seem to reflect mixing in the initially prepared eigenstates and, possibly, collisional coupling during the reaction.  相似文献   

18.
A detailed analysis of the high resolution infrared emission spectra of gaseous ZnH2 and ZnD2 in the 800-2200 cm(-1) spectral range is presented. The nu3 antisymmetric stretching fundamental bands of 64ZnH2, 66ZnH2, 67ZnH2, 68ZnH2, 64ZnD2, 66ZnD2 and 68ZnD2, as well as several hot bands involving nu1, nu2 and nu3 were rotationally analyzed, and spectroscopic constants were obtained. Rotational l-type doubling and l-type resonance, local perturbations, and Fermi resonances were observed in the vibration-rotation bands of both ZnH2 and ZnD2, and equilibrium vibrational frequencies (omega1, omega2 and omega3) were estimated. Using the rotational constants of the 000, 100, 01(1)0 and 001 vibrational levels, the equilibrium rotational constants (B(e)) of 64ZnH2 and 64ZnD2 were determined to be 3.600 269(31) cm(-1) and 1.801 985(25) cm(-1), respectively, and the associated equilibrium bond lengths (r(e)) are 1.524 13(1) angstroms and 1.523 94(1) angstroms, respectively. The difference between the r(e) values of 64ZnH2 and 64ZnD2 is about 0.01%, and is mainly due to the breakdown of the Born-Oppenheimer approximation.  相似文献   

19.
Infrared extinction spectra of ammonia ice nanoparticles with radii between 2 and 10 nm show pronounced band shape variations depending on the conditions of particle formation by collisional cooling. We present experimental and theoretical evidence showing that the variations in the region of the nu2 (umbrella) fundamental are due to changes in the particle size. The effect is analyzed in terms of an explicit atomistic model of the particles' structure and vibrational dynamics. An explicit potential function combined with a novel extension of the vibrational exciton approach allows us to simulate extinction spectra for particles containing up to 16,000 atoms. It is shown that the particles formed under the conditions of our experiments consist of a crystalline core surrounded by an amorphous shell with an approximately constant thickness of 1-2 nm. For the nu2 fundamental, this shell gives rise to a broad band [full width at half maximum (FWHM) 72 cm(-1)] blueshifted by about 19 cm(-1) relative to a narrow peak (FWHM of 19 cm(-1)) which arises from the crystalline core.  相似文献   

20.
The Fourier transform infrared spectrum of tropolone(OH) vapor in the 1175-1700 cm(-1) region is reported at 0.0025 and 0.10 cm(-1) spectral resolutions. The 12 vibrational fundamentals in this region of rapidly rising vibrational state density are dominated by mixtures of the CC, CO, CCH, and COH internal coordinates. Estimates based on the measurement of sharp Q branch peaks are reported for 11 of the spectral doublet component separations DS(v) = |Delta(v) +/- Delta(0)|. Delta(0) = 0.974 cm(-1) is the known zero-point splitting, and three a(1) modes show tunneling splittings Delta(v) approximately Delta(0), four b(2) modes show splittings Delta(v) approximately 0.90Delta(0), and the remaining four modes show splittings Delta(v) falling 5-14% from Delta(0.) Significantly, the splitting for the nominal COH bending mode nu(8) (a(1)) is small, that is, 10% from Delta(0). Many of the vibrational excited states demonstrate strong anharmonic behavior, but there are only mild perturbations on the tautomerization mechanism driving Delta(0). The data suggest, especially for the higher frequency a(1) fundamentals, the onset of selective intramolecular vibrational energy redistribution processes that are fast on the time scale of the tautomerization process. These appear to delocalize and smooth out the topographical modifications of the zero-point potential energy surface that are anticipated to follow absorption of the nu(v) photon. Further, the spectra show the propensity for the Delta(v) splittings of b(2) and other complex vibrations to be damped relative to Delta(0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号