首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solvent extraction as a technique for the separation of ionic solutes and the advantages and application of substoichiometric extraction in neutron activation analysis have been discussed. The application of this technique has been elucidated with reference to the determination of Zn, Cd and Hg in environmental samples. The decontamination factor, accuracy, precision, sensitivity and radiochemical purity of the separated fraction have been discussed.  相似文献   

2.
A novel adsorbent of thiacalix[4]arene tetracarboxylate derivative modified mesoporous TiO2 was prepared and was used as a packing material for flow injection (FI) micro-column (20 mm × 4.0 mm i.d.) separation/preconcentration on-line coupled to inductively coupled plasma optical emission spectrometry (ICP-OES) simultaneous determination of trace metals (V, Cu, Pb, Cr) in environmental water samples. The experimental conditions for modified mesoporous TiO2 packed micro-column separation/preconcentration of the target metals were optimized and the interference of commonly coexisting ions was examined. The adsorption capacities of thiacalix[4]arene tetracarboxylate derivative modified mesoporous TiO2 for V, Cu, Pb and Cr were found to be 14.0, 11.7, 17.7 and 14.5 mg g− 1, respectively. The detection limits of the method were 0.09, 0.23, 0.50 and 0.15 µg L− 1 for V, Cu, Pb and Cr, respectively, with a preconcentration factor of 20. The precision of this method were 1.7% (V), 3.9% (Cu), 4.6% (Pb) and 2.9% (Cr) (n = 7, C = 5 µg L− 1), respectively. The developed method was applied to the determination of trace heavy metals in real samples and the recoveries for spiked samples were found to be in the range of 88.7-107.1%. For validation, a certified reference material of GSBZ50009-88 environmental water sample was analyzed and the determined values were in good agreement with the certified values.  相似文献   

3.
Dynamic fractionation has been recognized as an appealing alternative to conventional equilibrium-based sequential extraction procedures (SEPs) for partitioning of trace elements (TE) in environmental solid samples. This paper reports the first attempt for harmonization of flow-through dynamic fractionation using two novel methods, the so-called sequential injection microcolumn (SIMC) extraction and rotating coiled column (RCC) extraction. In SIMC extraction, a column packed with the solid sample is clustered in a sequential injection system, while in RCC, the particulate matter is retained under the action of centrifugal forces. In both methods, the leachants are continuously pumped through the solid substrates by the use of either peristaltic or syringe pumps.A five-step SEP was selected for partitioning of Cu, Pb and Zn in water soluble/exchangeable, acid-soluble, easily reducible, easily oxidizable and moderately reducible fractions from 0.2 to 0.5 g samples at an extractant flow rate of 1.0 mL min−1 prior to leachate analysis by inductively coupled plasma-atomic emission spectrometry.Similarities and discrepancies between both dynamic approaches were ascertained by fractionation of TE in certified reference materials, namely, SRM 2711 Montana Soil and GBW 07311 sediment, and two real soil samples as well. Notwithstanding the different extraction conditions set by both methods, similar trends of metal distribution were in generally found. The most critical parameters for reliable assessment of mobilisable pools of TE in worse-case scenarios are the size-distribution of sample particles, the density of particles, the content of organic matter and the concentration of major elements. For reference materials and a soil rich in organic matter, the extraction in RCC results in slightly higher recoveries of environmentally relevant fractions of TE, whereas SIMC leaching is more effective for calcareous soils.  相似文献   

4.
Chaozhang Huang 《Talanta》2007,73(2):274-281
Mesoporous titanium dioxide as a novel solid-phase extraction material for flow injection micro-column preconcentration on-line coupled with ICP-OES determination of trace metals (Co, Cd, Cr, Cu, Mn, Ni, V, Ce, Dy, Eu, La and Yb) in environmental samples was described. Possessing a high adsorption capacity towards the metal ions, mesoporous titanium dioxide has found to be of great potential as an adsorbent for the preconcentration of trace metal ions in samples with complicated matrix. The experimental parameters including pH, sample flow rate, volume, elution and interfering ions on the recovery of the target analytes were investigated, and the optimal experimental conditions were established. Under the optimized operating conditions, a preconcentration time of 90 s and elution time of 18 s with enrichment factor of 10 and sampling frequency of 20 h−1 were obtained. The detection limits of this method for the target elements were between 0.03 and 0.36 μg L−1, and the relative standard deviations (R.S.D.s) were found to be less than 6.0% (n =7, c =5 ng mL−1). The proposed method was validated using a certified reference material, and has been successfully applied for the determination of the afore mentioned trace metals in natural water samples and coal fly ash with satisfactory results.  相似文献   

5.
A fast method for the determination of As, Co, Cu, Fe, Mn, Ni, Se and V in biological samples by ETV-ICP-MS, after a simple sample treatment with formic acid, is proposed. Approximately 75 mg of each sample is mixed with 5 mL of formic acid, kept at 90 °C for 1 h and then diluted with nitric acid aqueous solution to a 5% (v/v) formic acid and 1% (v/v) nitric acid final concentrations. A palladium solution was used as a chemical modifier. The instrumental conditions, such as carrier gas flow rate, RF power, pyrolysis and vaporization temperatures and argon internal flow rate during vaporization were optimized. The formic acid causes a slight decrease of the analytes signal intensities, but does not increase the signal of the mainly polyatomic ions (14N35Cl+, 14N12C+, 40Ar12C+, 13C37Cl+, 40Ar36Ar+, 40Ar35Cl+, 35Cl16O+, 40Ar18O+) that affect the analytes signals. The effect of charge transfer reactions, that could increase the ionization efficiency of some elements with high ionization potentials was not observed due to the elimination of most of the organic compounds during the pyrolysis step. External calibration with aqueous standard solutions containing 5% (v/v) formic acid allows the simultaneous determination of all analytes with high accuracy. The detection limits in the samples were between 0.01 (Co) and 850 μg kg−1 (Fe and Se) and the precision expressed by the relative standard deviations (RSD) were between 0.1% (Mn) and 10% (Ni). Accuracy was validated by the analysis of four certified reference biological materials of animal tissues (lobster hepatopancreas, dogfish muscle, oyster tissue and bovine liver). The recommended procedure avoids plasma instability, carbon deposit on the cones and does not require sample digestion.  相似文献   

6.
 Chemical analyses of trace elements are affected by relatively high analytical errors due to the different steps of the laboratory procedures: samples grinding, mineralisation and instrumental measurements. In the present communication, the influence of the grinding phase on the global uncertainty of Pb, Cd, Ni and Cr determinations in plant samples by the classical method of atomic absorption spectrometry/electrothermal atomisation (AAS-ETA) after dry ashing is quantified. Two grinding machines, a planetary mill with balls and jars of agate versus a stainless steel grinder were compared by analysing leaf samples of cucumber, strawberry, kiwivines, apple trees and grapevines from agricultural experimental plots under controlled conditions. Variance components due to the difference between grinding methods and experimental plots were estimated. Further, the simultaneous effects of the grinding methods on all considered metals have been evaluated by analysis of variance. With the stainless steel grinder, on average, higher levels of the considered heavy metals were obtained (up to 67% of the mean values). On average, the increments were similar for metals contained in steel (Ni and Cr) and those not contained (Pb and Cd). The true causes of these differences need further investigation to determine whether the higher metal detection is due to possible contamination, to a different grinding quality or to other reasons. Finally, the grinding methods did not seem to affect the combined uncertainty of the analyses. Received: 3 November 1997 · Accepted: 29 November 1997  相似文献   

7.
In order to measure trace 236U and 236U/238U in environmental samples with a high matrix effect, a novel and simple method was developed that makes the digestion and purification procedures compatible with advanced triple-quadrupole inductively coupled plasma-mass spectrometry. A total dissolution of sample with HF + HNO3 + HClO4 was followed by chromatographic separation with a single resin column containing normal type DGA resin (N,N,N′,N’-tetra-n-octyldiglycolamide) as the extractant system. The analytical accuracy and precision of 236U/238U ratios, measured as 236U16O+/238U16O+, were examined by using the reference materials IAEA-135, IAEA-385, IAEA-447, and JSAC 0471. The low method detection limit (3.50 × 10−6 Bq kg−1) makes it possible to perform routine monitoring of environmental 236U due to global fallout combined with the Fukushima Daiichi Nuclear Power Plant accident fallout (>10−5 Bq kg−1). Finally, the developed method was successfully applied to measure 236U/238U ratios and 236U activities in soil samples contaminated by the accident. The low 236U/238U atom ratios ((1.50–13.5) × 10−8) and 236U activities ((2.25–14.1) × 10−2 mBq kg−1) indicate 236U contamination was mainly derived from global fallout in the examined samples.  相似文献   

8.
In this study, the superparamagnetic attapulgite/Fe3O4/polyaniline (ATP/Fe3O4/PANI) nanocomposites were successfully synthesized by a one-pot method. Fe (III) was applied as both the oxidant for the oxidative polymerization of aniline and the single iron source of Fe3O4 formed by the redox reaction between aniline and Fe (III). The ATP/Fe3O4/PANI was used as sorbent for magnetic dispersive solid phase extraction (MDSPE) of benzoylurea insecticides (BUs) in environmental water samples. The as-prepared nanocomposite sorbents were characterized by Fourier transform infrared spectra (FT-IR), X Ray diffraction (XRD), scanning electron microscopy(SEM), transmission electron microscopy (TEM), and vibrating sample magnetometry. Various experimental parameters affecting the ATP/Fe3O4/PANI-based MDSPE procedure, including the composition of the nanocomposite sorbents, amount of ATP/Fe3O4/PANI nanocomposites, vortex time, pH, and desorption conditions were investigated. Under the optimal conditions, a good linearity was observed for all target analytes, with correlation coefficients (r2) ranging from 0.9985 to 0.9997; the limits of detection (LOD) were in the range of 0.02–0.43 μg L−1, and the recoveries of analytes using the proposed method ranged between 77.37% and 103.69%. The sorbents exhibited an excellent reproducibility in the range of 1.52–5.27% in extracting the five target analytes. In addition, the intra-day and inter-day precision values were found to be in the range of 0.78–6.86% and 1.66–8.41%, respectively. Finally, the proposed ATP/Fe3O4/PANI-based MDSPE method was successfully applied to analyze river water samples by rapid preconcentration of BUs.  相似文献   

9.
The carbon coated Fe3O4 nanoparticles (Fe3O4/C) were synthesized by a simple hydrothermal reaction and applied as solid-phase extraction (SPE) sorbents to extract trace polycyclic aromatic hydrocarbons (PAHs) from environmental water samples. The Fe3O4/C sorbents possess high adsorption capacity and extraction efficiency due to strong adsorption ability of carbon materials and large surface area of nanoparticles, and only 50 mg of sorbents are required to extract PAHs from 1000 mL water samples. The adsorption attains equilibrium rapidly and analytes are eluted with acetonitrile readily. Salinity and solution pH have no obvious effect on the recoveries of PAHs, which avoids fussy adjustment to water sample before extraction. Under optimized conditions, the detection limits of PAHs are in the range of 0.2–0.6 ng L−1. The accuracy of the method was evaluated by the recoveries of spiked samples. Good recoveries (76–110%) with low relative standard deviations from 0.8% to 9.7% are achieved. This new SPE method provides several advantages, such as high extraction efficiency, high breakthrough volumes, convenient extraction procedure, and short analysis times. To our knowledge, this is the first time that Fe3O4/C nanoparticles are used for the pretreatment of environmental water samples.  相似文献   

10.
Polythiophene (PT) was used as a surface modifier of graphene/Fe3O4 (G/Fe3O4) composite to increase merit of it, and also overcome some limitations and disadvantages of using G/Fe3O4 alone as solid phase extraction (SPE) sorbent. An in-situ chemical polymerization method was employed to prepare G/Fe3O4@PT nanocomposites. Application of this newly designed material in the magnetic SPE (MSPE) of polycyclic aromatic hydrocarbons (PAHs), as model analytes, in the environmental water samples was investigated. The characterization of the hybrid material was performed using transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform-infrared (FT-IR) spectroscopy and vibrating sample magnetometry. Seven important parameters, affecting the extraction efficiency of PAHs, including: amount of adsorbent, adsorption and desorption times, type and volume of the eluent solvent, initial sample volume and salt content of the sample were evaluated. The optimum extraction conditions were obtained as: 4 min for extraction time, 20 mg for sorbent amount, 100 mL for initial sample volume, toluene as desorption solvent, 0.6 mL for desorption solvent volume, 6 min for desorption time and 30% (w/v) for NaCl concentration. Good performance data were obtained at the optimized conditions. Detection limits were in the range of 0.009–0.020 μg L−1 in the real matrix. The calibration curves were linear over the concentration ranges from 0.03 to 80 μg L−1 with correlation coefficients (R2) between 0.995 and 0.998 for all the analytes. Relative standard deviations were ranged from 4.3 to 6.3%. Appropriate recovery values, in the range of 83–107%, were also obtained for the real sample analysis.  相似文献   

11.
This work describes a magnetic Fe3O4/graphene oxide (GO)-based solid-phase extraction (MSPE) technique for high performance liquid chromatography (HPLC) detection of malachite green (MG) and crystal violet (CV) in environmental water samples. Fe3O4/ GO magnetic nanoparticles were synthesised by a chemical co-precipitation method and characterised by scanning electron micrograph, transmission electron microscope, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and surface area analyser. The prepared Fe3O4/GO magnetic nanoparticles were used as the adsorbents of MSPE for MG and CV. By coupling with HPLC, a sensitive and cost-effective method for simultaneous determination of MG and CV was developed. The important parameters including the amount of Fe3O4/GO, pH of the sample solution, extraction time, salt effect, the type and volume of desorption solvent were investigated in detail. Under optimised conditions, the calibration curves were linear in the concentration range of 0.5–200 μg L?1, and the limits of detection were 0.091 and 0.12 μg L?1 for MG and CV, respectively. Finally, the established MSPE-HPLC method was successfully applied to determine MG and CV in environmental water samples with the recoveries ranging from 91.5% to116.7%.  相似文献   

12.
To obtain information on the environmental impact of materials eluted from volcanic ashes of Mt. Oyama, Miyake Island, which erupted in July 2000, the dissolution behaviours of heavy metals and rare-earth elements from the volcanic ashes were examined. The most important characteristic of the Mt. Oyama eruption is that sulphur dioxide (SO2) gas has been continuously released, and all persons living on Miyake Island have been required to evacuate. To estimate in terms of the volcanic eruption using SO2 gas, the ash nature in Mt. Usu, Hokkaido, was also examined and compared with that in Mt. Oyama. When rain water mixed the ashes, the water from the ashes of Mt. Oyama became acidic because of the sulphuric acid. Therefore, SO2 gas in Mt. Oyama can accelerate the dissolution of protons and heavy metals in the ashes, whereas the rain water in Mt. Usu was not acidic and the dissolution of the heavy metals was not so evident compared with that in the case of Mt. Oyama. With this sulphuric acid, heavy metals such as As, Cd, Pb and Hg in the ashes in Mt. Oyama easily dissolved owing to the low pH. The ashes in Mt. Oyama had been released for eight years and the amount of fallen ashes was estimated to be 33 billion tons. The weights of the harmful heavy metals in the volcanic ashes, such as As, Cd, Pb and Hg, were estimated to be 3.8?×?102, 1.3?×?103, 1.1?×?103 and 29?kg, respectively, and these heavy metals were dissolved and diluted in seawater. Therefore, the concentration and species (chemical form) of these metals should be carefully monitored in the future. Moreover, SO2 gas, which has a direct effect on human health and has been monitored continuously, causes other effects, such as facilitation of metal ion elution and rock aeration.  相似文献   

13.
Molecular imprinted polymer for determination of malachite green (MG) and fuchsine basic (FU) dyes by spectrophotometry has been used, to develop a novel simultaneous extraction and preconcentration method. Molecularly imprinted layer-coated nano-alumina (MIP@Nano-Al2O3) as adsorbent was prepared by surface molecular imprinting technique, and characterised by FTIR spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis (EDAX) and thermogravimetric analysis (TGA). The method is based on simultaneous extraction of MG and FU dyes from aqueous solution by using molecularly imprinted polymer and measuring the absorbance at 617 and 546 nm for MG and FU, respectively. Parameters which affect the extraction efficiency such as pH, volume of eluent and amount of adsorbent were investigated and optimised. Linear calibration curves were obtained in the range of 2–750 ng mL?1 for MG and 1–240 ng mL?1 for FU under optimum conditions. Detection limit based on three times the standard deviation of the blank (3Sb) was 0.655 and 0.245 ng mL?1 (n = 10) for MG and FU, respectively. The relative standard deviation (RSD) for 100 ng mL?1 of MG and FU was 2.35 and 3.06% (n = 7), respectively. The method was applied to the simultaneous determination of the dyes in different seafood and environmental water samples.  相似文献   

14.
In-vivo and in-vitro gastrointestinal (GI) extractions, also known as oral bioaccessibility and bioavailability, are important approaches to assess chemical risk to humans. We give an overview of in-vivo and in-vitro bioaccessibility and bioavailability assays for testing arsenic, selenium and mercury (As, Se and Hg) species from food samples. We critically evaluate the parameters affecting in-vivo and in-vitro processes. In addition, we consider the effect of cooking food on bioaccessibility and bioavailability, and stability and transformation, of species during in-vivo or in-vitro processes. The bioaccessibility and bioavailability of As, Se and Hg species are affected by the sample matrix, cooking food and the experimental conditions applied (gastric and intestinal pH, incubation temperature and residence time). Regarding species degradation and transformation during in-vitro procedures, good stability has been observed for most As species, except for certain arsenosugars. Important transformations during in-vitro processes have been reported for Se species [e.g., conversion of γ-glu-Se-MeSeCys to Se-MeSeCys, and organic Se species (MeSeCys, SeCys2 and SeMet) degradation to inorganic Se]. Finally, we summarize speciation and detection conditions for As, Se and Hg speciation, and quality control to assure reliable measurements.  相似文献   

15.
In this paper, 1-hexadecyl-3-methylimidazolium bromide (C16mimBr)-coated Fe3O4 magnetic nanoparticles (NPs) as an adsorbent of mixed hemimicelles solid-phase extraction was investigated for the preconcentration of two chlorophenols (CPs) in environmental water samples prior to HPLC with UV detection at 285 nm. The high surface area and excellent adsorption capacity of the Fe3O4 NPs after modification with C16mimBr were utilized adequately in the SPE process. By the rapid isolation of Fe3O4 NPs through placing a strong magnet on the bottom of beaker, the time-consuming preconcentration process of loading large volume sample in conventional SPE method with a column can be avoided. A comprehensive study of the adsorption conditions such as the zeta-potential of Fe3O4 NPs, added amounts of C16mimBr, pH value, standing time and maximal extraction volume were also presented. Under optimized conditions, two analytes of 2,4-dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP) were quantitatively determined. The method was then used to determine the two CPs in real environmental water samples. The accuracy of method was evaluated by recovery measurements on spiked samples. Good recovery results (74–90%) were achieved. It is important to note that satisfactory preconcentration factors and extraction recoveries for the two CPs were obtained with only a small amount of Fe3O4 NPs (40 mg) and C16mimBr (24 mg).  相似文献   

16.
Morin was successful as a chemical modifier to improve the reactivity of the nanometer SiO2 surface in terms of selective binding and extraction of heavy metal ions. This new functionalized nanometer SiO2 (nanometer SiO2-morin) was used as an effective sorbent for the solid-phase extraction (SPE) of Cd(II), Cu(II), Ni(II), Pb(II), Zn(II) in solutions prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of metal ions were optimized with respect to different experimental parameters using static and dynamic procedures in detail. The pH 4.0 was chosen as the optimum pH value for the separation of metal ions on the newly sorbent. Complete elution of the adsorbed metal ions from the nanometer SiO2-morin was carried out using 2.0 mL of 0.5 mol L−1 of HCl. Common coexisting ions did not interfere with the separation and determination at pH 4.0. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 22.36, 36.8, 40.37, 33.21 and 25.99 mg metal/g SiO2-morin for Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II), respectively. The time for 95% sorption for Cu(II) and Ni(II) and 70% sorption for Cd(II), Pb(II) and Zn(II) was less than 2 min. The relative standard deviation (RSD) of the method under optimum conditions was lower than 5.0% (n = 11). The procedure was validated by analyzing the certified reference river sediment material (GBW 08301, China), the results obtained were in good agreement with standard values. The nanometer SiO2-morin was successfully employed in the separation and preconcentration of trace Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) from the biological and natural water samples yielding 75-folds concentration factor.  相似文献   

17.
Present study developed a new method for the sensitive determination of pyrethroid insecticides with solid phase extraction in combination with high performance liquid chromatography and UV detector. SiO2 microspheres, a new SiO2 based material, was investigated for the enrichment ability and applicability as the solid phase extraction sorbent. Four pyrethroid pesticides such as fenpropathrin, cyhalothrin, fenvalevate and biphenthrin were used as the target analytes. Parameters that maybe influence the extraction efficiency such as the eluent type and its volume, sample flow rate, sample pH, and the sample volume were optimized in detail, and the optimal conditions were as followed: sample volume, 100 mL; concentration of methanol, 30%; acetone volume, 5 mL; sample flow rate, 4.2 mL min−1; sample pH, 7. The experimental results indicated that there was good linearity in the concentration range of 0.1–50 μg L−1 except biphenthrin in the range of 0.05–25 μg L−1. The detection limits for fenpropathrin, cyhalothrin, fenvalevate and biphenthrin were in the range of 0.02–0.08 μg L−1. The intra-day and day to day precisions (RSDs, n = 6) were in the ranges of 2.6–4.4% and 5.3–7.2%, respectively. The method was validated with five real environmental water samples, and all these results proved that proposed method could be used as a good alternative for the routine analysis for such pollutants in environmental samples.  相似文献   

18.
A solid phase extraction procedure has been developed using multiwalled carbon nanotubes (MWCNTs) as a solid sorbent and quinalizarin [1,2,5,8-tetrahydroxyanthracene-9,10-dione] as a chelating agent for separation and preconcentration of trace amounts of some heavy metal ions, Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) before their determination by flame atomic absorption spectroscopy (FAAS). The influences of the analytical parameters, including pH, amounts of quinalizarin and adsorbent, sample volume, elution conditions such as volume and concentration of eluent, flow rates of solution and matrix ions, were investigated for the optimum recoveries of the analyte ions. No interference effects were observed from the foreign metal ions. The preconcentration factor was 100. The detection limit (LOD) for the investigated metals at the optimal conditions were observed in the range of 0.30–0.65 μg L?1. The relative standard deviation (RSDs), and the recoveries of standard addition for this method were lower than 5.0% and 96–102%, respectively. The new procedure was successfully applied to the determination of analytes in food, water and environmental samples with satisfactory results.  相似文献   

19.
Different types of edible seaweeds (Kombu, Wakame, Nori and Sea Lettuce) harvested in the Galician coast (Northwestern Spain) were analyzed for total arsenic quantification before and after being cooked following manufacturer's instructions. Furthermore, the total arsenic in the bioaccessible fraction obtained after simulating a human digestion by an in vitro process was determined in those raw and cooked seaweeds. The detection of the target element was performed by inductively coupled plasma-mass spectrometry (ICP-MS) which was equipped with a collision cell to avoid polyatomic interferences. Piperazine-NN-bis (2-ethane-sulfonic acid) disodium (PIPES) buffer solution at a pH of 7.0 and dialysis membranes of 10 kDa molecular weight cut-off (MWCO) were used for intestinal digestion. Accuracy of the method was assessed by analyzing a BCR-279 certified reference material. The accuracy of the in vitro procedures was established by a mass balance study for Nori and Sea Lettuce which led to good accuracy of the whole in vitro process, after statistical evaluation (95% confidence interval). Results showed that the effect of cooking seaweed causes the removal of the element into the cooking water. Dialyzability percentages found in raw seaweed samples were comparable to those found in cooked seaweed, except in the case of Sea Lettuce sample for which a lower dialyzability percentage was found when it was cooked.  相似文献   

20.
A novel Fe3O4/graphene/polypyrrole nanocomposite has been successfully synthesised via a simple chemical method and applied as a new magnetic solid-phase extraction (MSPE) sorbent for the separation and pre-concentration of trace amounts of Pt (IV) in environmental samples followed by flame atomic absorption spectrometric (FAAS) detection. The nanocomposite has been characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. Seven important parameters, affecting the extraction efficiency of Pt (IV), including pH, adsorption time, desorption solvent type and concentration, desorption time, elution volume and sample volume, were investigated. Under the optimised conditions, the calibration graph was linear in the range of 50–1500 μg L?1 (R = 0.993). The detection limit and pre-concentration factor (PF) for Pt (IV) were found to be 16 μg L?1 and 112.5, respectively. Under the optimised solid-phase extraction (SPE) conditions, the adsorption isotherm and the adsorption capacity of the nanocomposite for Pt (IV) were studied. Pt (IV) adsorption equilibrium data were fitted well to the Langmuir isotherm and the maximum adsorption capacity of the magnetic sorbent was calculated from the Langmuir isotherm model as 416.7 mg g?1. The precision of the method was studied as intraday and interday variations. A relative standard deviation percentage (RSD%) value less than 3.0 indicates that the method is precise. Also, the accuracy of the method was tested by the analysis of the standard reference material (NIST SRM 2556) and by recovery measurements on spiked real samples. It was also shown that the optimised method was suitable for the analysis of trace amounts of Pt (IV) in roadside soil, tap water and wastewater samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号