首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aptamers are DNA oligonucleotides capable of binding different classes of targets with high affinity and selectivity. They are particularly attractive as affinity probes in multiplexed quantitative analysis of proteins. Aptamers are typically selected from large libraries of random DNA sequences in a general approach termed systematic evolution of ligands by exponential enrichment (SELEX). SELEX involves repetitive rounds of two processes: (i) partitioning of aptamers from non-aptamers by an affinity method and (ii) amplification of aptamers by the polymerase chain reaction (PCR). New partitioning methods, which are characterized by exceptionally high efficiency of partitioning, have been recently introduced. For the overall SELEX procedure to be efficient, the high efficiency of new partitioning methods has to be matched by high efficiency of PCR. Here we present the first detailed study of PCR amplification of random DNA libraries used in aptamer selection. With capillary electrophoresis as an analytical tool, we found fundamental differences between PCR amplification of homogeneous DNA templates and that of large libraries of random DNA sequences. Product formation for a homogeneous DNA template proceeds until primers are exhausted. For a random DNA library as a template, product accumulation stops when PCR primers are still in excess of the products. The products then rapidly convert to by-products and virtually disappear after only 5 additional cycles of PCR. The yield of the products decreases with the increasing length of DNA molecules in the library. We also proved that the initial number of DNA molecules in PCR mixture has no effect on the by-products formation. While the increase of the Taq DNA polymerase concentration in PCR mixture selectively increases the yield of PCR products. Our findings suggest that standard procedures of PCR amplification of homogeneous DNA samples cannot be transferred to PCR amplification of random DNA libraries: to ensure efficient SELEX, PCR has to be optimized for the amplification of random DNA libraries.  相似文献   

2.
韩诗邈  赵丽萍  杨歌  屈锋 《色谱》2021,39(7):721-729
8-氧代鸟嘌呤DNA糖基化酶(OGG1)是人体中重要的功能蛋白,在修复DNA氧化性损伤过程中起关键作用。氧化应激等引起的氧化损伤易导致炎症反应的发生,对OGG1的抑制可以一定程度上起到缓解作用;对癌细胞OGG1的抑制有望作为癌症治疗的新方法。目前的研究多集中于小分子对OGG1功能的影响和调控,而OGG1的适配体筛选尚未见报道。作为功能配体,适配体具有合成简单、高亲和力及高特异性等优点。该文筛选了OGG1的核酸适配体,结合毛细管电泳高效快速的优点建立了两种基于毛细管电泳-指数富集进化(CE-SELEX)技术的筛选方法:同步竞争法和多轮筛选法。同步竞争法利用单链结合蛋白(SSB)与核酸库中单链核酸的强结合能力,与目标蛋白OGG1组成竞争体系,并通过增加SSB浓度来增加竞争筛选压力,以去除与OGG1弱结合的核酸序列,一步筛选即可获得与OGG1强结合的核酸序列。多轮筛选法在相同孵育条件和电泳条件下,经3轮筛选获得OGG1的核酸适配体。比较两种筛选方法的筛选结果,筛选结果中频次最高的3条候选核酸适配体序列一致,其解离常数(KD)值在1.71~2.64 μmol/L之间。分子对接分析结果表明候选适配体1(Apt 1)可能与OGG1中具有修复氧化性损伤功能的活性口袋结合。通过对两种筛选方法的对比,证明同步竞争法更加快速高效,对其他蛋白核酸适配体筛选方法的选择具有一定的指导意义。得到的适配体有望用于OGG1功能调控,以抑制其修复功能。  相似文献   

3.
High‐affinity aptamers for important signal transduction proteins, i.e. Cdc42‐GTP, p21‐activated kinase1 (PAK1) and MRCK (myotonic dystrophy kinase‐related Cdc42‐binding kinase) α were successfully selected in the low micro‐ to nanomolar range using non‐systematic evolution of ligands by exponential enrichment (SELEX) with at least three orders of magnitude enhancement from their respective bulk affinity of naïve DNA library. In the non‐SELEX procedure, CE was used as a highly efficient affinity method to select aptamers for the desired molecular target through a process that involved repetitive steps of partitioning, known as non‐equilibrium CE of equilibrium mixtures with no PCR amplification between successive steps. Various non‐SELEX conditions including the type, concentration and pH of the run buffer were optimized. Other considerations such as salt composition of selection buffer, protein concentration and sample injection size were also studied for high stringency during selection. After identifying the best enriched aptamer pool, randomly selected clones from the aptamer pool were sequenced to obtain the individual DNA sequences. The dissociation constants (Kd) of these sequences were in the low micromolar to nanomolar range, indicating high affinity to the respective proteins. The best binders were also subjected to sequence alignment to generate a phylogenetic tree. No significant consensus region based on approximately 50 sequences for each protein was observed, suggesting the high efficiency of non‐SELEX for the selection of numerous unique sequences with high selectivity.  相似文献   

4.
《Analytical letters》2012,45(15):2389-2402
Abstract

A qualitative capillary electrophoresis immunoassay was developed for the first-time to evaluate aptamer binding to bacterial cells. Binding affinity of aptamers developed against a Campylobacter jejuni bacterial cell target, relative to other common food-borne pathogens was investigated and specific binding affinity was evidenced by pronounced mobility shift and peak broadening with increasing bacteria concentration for both aptamers. Little to no mobility shift was observed for food-borne pathogens, Salmonella typhirium and Escherichia coli, even when increasing concentrations 10-fold over target. These results suggest that affinity probe capillary electrophoresis could be useful for qualitative screening of aptamer candidates for bacterial cell targets.  相似文献   

5.
Capillary electrophoresis based systematic evolution of ligands via exponential enrichment (CE-SELEX) was reported as a homogeneous efficient method for high-affinity selection of aptamer, with several merits involving screening in free solution without nonspecific binding, capable of high-efficient separation, low-sample consumption, and saving money. There are few studies regarding the aptamer selection against small molecule using CE-SELEX, resulting from the aspects of less binding sites and the negligible variety of its complex with nucleic acid in the electrophoretic mobility. In this study, we performed the aptamer selection towards a small molecule target of clenbuterol hydrochloride (Clen) by CE-SELEX. In brief, Clen were first incubated with an 80 nt ssDNA library, and CZE-UV approach was used to separate complex and random ssDNA. The complex was then collected into a vial followed by PCR amplification. Through three round selections, the third library was selected to clone and ten sequences were finally obtained. The dissociation constant (Kd) of three potential candidates (Apt 4, Apt 7 and Apt 12) were determined by CE-LIF, and showed high affinities of 9.315 × 10?7 M, 1.040 × 10?6 M and 1.143 × 10?5 M, respectively. The result of m-Fold software analysis showed that the above three sequences could form stem-loop structure, and the Apt 4 gave the lowest free energy and the most stable structure. Using salbutamol as a control, three selected aptamers were verified with high specificity.  相似文献   

6.
In DNA aptamer selection, existing methods do not discriminate aptamer sequences based on their binding affinity and function and the reproducibility of the selection is often poor, even for the selection of well-known aptamers like those that bind the commonly used model protein thrombin. In the present study, a novel single-round selection method (SR-CE selection) was developed by combining capillary electrophoresis (CE) with next generation sequencing. Using SR-CE selection, a successful semi-quantitative and semi-comprehensive aptamer selection for thrombin was demonstrated with high reproducibility for the first time. Selection rules based on dissociation equilibria and kinetics were devised to obtain families of analogous sequences. Selected sequences of the same family were shown to bind thrombin with high affinity. Furthermore, data acquired from SR-CE selection was mined by creating sub-libraries that were categorized by the functionality of the aptamers (e. g., pre-organized aptamers versus structure-induced aptamers). Using this approach, a novel fluorescent molecular recognition sensor for thrombin with nanomolar detection limits was discovered. Thus, in this proof-of-concept report, we have demonstrated the potential of a “DNA Aptaomics” approach to systematically design functional aptamers as well as to obtain high affinity aptamers.  相似文献   

7.
An aptamer-based label-free approach to hemin recognition and DNA assay using capillary electrophoresis with chemiluminescence detection is introduced here. Two guanine-rich DNA aptamers were used as the recognition element and target DNA, respectively. In the presence of potassium ions, the two aptamers folded into the G-quartet structures, binding hemin with high specificity and affinity. Based on the G-quartet–hemin interactions, the ligand molecule was specifically recognized with a K d ≈ 73 nM, and the target DNA could be detected at 0.1 μM. In phosphate buffer of pH 11.0, hemin catalyzed the H2O2-mediated oxidation of luminol to generate strong chemiluminescence signal; thus the target molecule itself served as an indicator for the molecule–aptamer interaction, which made the labeling and/or modification of aptamers or target molecules unnecessary. This label-free method for molecular recognition and DNA detection is therefore simple, easy, and effective. Figure A label-free approach to aptamer-based hemin recognition and DNA detection is introduced, which gives great potential for using a small molecule itself as the indicator for molecular recognition and DNA detection thereby avoiding any labeling or modification step  相似文献   

8.
The low therapeutic index of digoxin necessitates careful monitoring of its serum levels. Most of digoxin immunoassays suffer from interferences with digoxin-like immunoreactive substances. Since aptamers have been shown to be highly specific for their targets, the aim of this study was to develop DNA aptamers for this widely used cardiac glycoside. Digoxin was coated onto the surface of streptavidin magnetic beads. DNA aptamers against digoxin were designed using Systematic Evolution of Ligands by Exponential enrichment method (SELEX) by 11 iterative rounds of incubation of digoxin-coated streptavidin magnetic beads with synthetic DNA library, DNA elution, electrophoresis and PCR amplification. The PCR product was cloned and sequenced. Binding affinity was determined using digoxin–BSA conjugate, coated onto ELISA plate. Inhibitory effect of anti-digoxin aptamer was conducted using isolated guinea-pig atrium. Three aptamers (D1, D2 and D3) were identified. Binding studies of fluorescein-labeled truncated (without primer binding region) D1 and D2 and full length D1 anti-digoxin aptamers were performed and their corresponding dissociation constants values were 8.2 × 10−9, 44.0 × 10−9 and 17.8 × 10−9 M, respectively. This is comparable to what other workers have obtained for interaction of monoclonal antibodies raised against digoxin. There was little difference in binding affinity between full length and truncated anti-digoxin D1 aptamer. D1 anti-digoxin aptamer also inhibited the effects of digoxin on the isolated guinea-pig atrium. D1 anti-digoxin aptamer distinguished between digoxin and ouabain in both tissue study and binding experiments. Our finding indicated that D1 anti-digoxin aptamer can selectively bind to digoxin. Further studies might show its suitability for use in digoxin assays and as a therapeutic agent in life-threatening digoxin toxicity.  相似文献   

9.
《Chemistry & biology》1997,4(11):817-832
Background: Structural studies by nuclear magnetic resonance (NMR) of RNA and DNA aptamer complexes identified through in vitro selection and amplification have provided a wealth of information on RNA and DNA tertiary structure and molecular recognition in solution. The RNA and DNA aptamers that target ATP (and AMP)' with micromolar affinity exhibit distinct binding site sequences and secondary structures. We report below on the tertiary structure of the AMP-DNA aptamer complex in solution and compare it with the previously reported tertiary structure of the AMP-RNA aptamer complex in solution.Results: The solution structure of the AMP-DNA aptamer complex shows, surprisingly, that two AMP molecules are intercalated at adjacent sites within a rectangular widened minor groove. Complex formation involves adaptive binding where the asymmetric internal bubble of the free DNA aptamer zippers up through formation of a continuous six-base mismatch segment which includes a pair of adjacent three-base platforms. The AMP molecules pair through their Watson-Crick edges with the minor groove edges of guanine residues. These recognition G·A mismatches are flanked by sheared G·A and reversed Hoogsteen G·G mismatch pairs.Conclusions: The AMP-DNA aptamer and AMP-RNA aptamer complexes have distinct tertiary structures and binding stoichiometries. Nevertheless, both complexes have similar structural features and recognition alignments in their binding pockets. Specifically, AMP targets both DNA and RNA aptamers by intercalating between purine bases and through identical G·A mismatch formation. The recognition G·A mismatch stacks with a reversed Hoogsteen G·G mismatch in one direction and with an adenine base in the other direction in both complexes. It is striking that DNA and RNA aptamers selected independently from libraries of 1014 molecules in each case utilize identical mismatch alignments for molecular recognition with micromolar affinity within binding-site pockets containing common structural elements.  相似文献   

10.
E. coli O157:H7 is a pathogenic bacterium producing verotoxins that could lead to serious complications such as hemolytic uremia syndrome. Fast detection of such pathogens is important. For rapid detection, aptamers are quickly gaining traction as alternative biorecognition molecules besides conventional antibodies. Several DNA aptamers have been selected for E. coli O157:H7. Nonetheless, there has not been a comparative study of the binding characteristics of these aptamers. In this work, we present a comprehensive analysis of binding characteristics including binding affinity (Kd) and binding capacity (Bmax) of DNA-based aptamers for E. coli O157:H7 using qPCR. Our results show that aptamer E18R has the highest binding capacity to E. coli 157:H7 and the highest specificity over non-pathogenic E. coli strains K12 and DH5α. Our study also finds that the common biotin-tag modification at 5′ end typically changes the binding capacity significantly. For most of the selected aptamers, the binding capacity after a biotin-tag modification decreases. There exists a discrepancy in the binding capability between the selected aptamer and the aptamer used for detection. Our study also shows that a lower concentration of Mg2+ ions in the binding buffer leads to a decrease in the binding capacity of E17F and E18R, while it does not affect the binding capacity of S1 and EcoR1.  相似文献   

11.
Katie A. Edwards 《Talanta》2007,71(1):365-372
RNA or DNA aptamers have received much attention in recent literature as therapeutic agents and chromatographic matrices, however, their use in analytical methodologies is relatively unexplored. We describe here investigations aiming to combine this promising technology with versatile liposomes in a competitive assay format. Thus, a phospholipid derivative of an unsymmetrical 1,3-disubstituted xanthine (1-carboxyethyl-3-methylxanthine-DPPE) was prepared for incorporation into the lipid bilayers of dye-encapsulating liposomes. Its synthesis and characterization using GC-MS, 1H NMR, and HPLC are described. Equilibrium filtration experiments using enzyme linked immunosorbent assays (ELISAs) were completed to assess the affinity for theophylline of an unmodified RNA aptamer and one that had been modified on the 3′ end with biotin. A dissociation constant (Kd) for theophylline with the unmodified RNA aptamer of 0.9 μM and biotinylated aptamer of 1.0 μM was determined which showed that this modification did not affect the aptamer's affinity using this technique. The observed Kd values correlated well to the previously reported value of 0.6 μM. Experiments were also carried out in a competitive manner with the prepared 1-carboxypropyl-3-methylxanthine intermediate, and the final 1-carboxypropyl-3-methylxanthine-DPPE conjugate once it had been incorporated into the bilayers of liposomes. The Kd value for 1-carboxypropyl-3-methylxanthine was approximately 2.7 μM. Finally, successful binding to theophylline-analog-tagged liposomes in a competitive assay format was shown versus liposomes prepared without the tag.  相似文献   

12.
Drug purity and affinity are essential attributes during development and production of therapeutic proteins. In this work, capillary electrophoresis (CE) was used to determine both the affinity and composition of the biotechnologically produced “nanobody” EGa1, the binding fragment of a heavy-chain-only antibody. EGa1 is an antagonist of the epidermal growth factor receptor (EGFR), which is overexpressed on the surface of tumor cells. Using a background electrolyte (BGE) of 50 mM sodium phosphate (pH 8.0) in combination with a polybrene-poly(vinylsulfonic acid) capillary coating, CE analysis of EGa1 showed the presence of at least three components. Affinity of the EGa1 components towards the extracellular domain of EGFR was assessed by adding different concentrations (0–12 nM) of the receptor to the BGE while measuring the effective electrophoretic mobility of the respective EGa1 components. Binding curves obtained by plotting electrophoretic mobility shifts as a function of receptor concentration, yielded dissociation constants (Kd) of 1.65, 1.67, and 1.75 nM for the three components, respectively; these values were comparable to the Kd of 2.1 nM obtained for the bulk EGa1 product using a cellular assay. CE with mass spectrometry (MS) detection using a BGE of 25 mM ammonium acetate (pH 8.0) revealed that the EGa1 sample comprised of significant amounts of deamidated, bisdeamidated and N-terminal pyroglutamic acid products. CE–MS using a BGE of 100 mM acetic acid (pH 2.8) in combination with a polybrene–dextran sulfate–polybrene capillary coating demonstrated the additional presence of minor products related to incomplete removal of the signal peptide from the produced nanobody. Combining the results obtained from affinity CE and CE–MS, it is concluded that the EGa1 nanobody product is heterogeneous, comprising highly-related proteins that exhibit very similar affinity towards EGFR.  相似文献   

13.
Chloramphenicol (CAP) has been widely used to treat bacterial infections in livestock and aquatic animals. To reduce the risk of CAP residues, an efficient technology to rapidly detect CAP residues in animal-sourced food is expressly needed. In this study, magnetic bead-based systematic evolution of ligands by exponential enrichment (Mag-SELEX) strategy was performed to select and identify CAP-specific single-stranded DNA (ssDNA) aptamers from a random oligonucleotide library. After nine rounds of selection, five potential ssDNA aptamers were selected. Low homology indicated that they might belong to different families. To identify an aptamer with the highest affinity for CAP, the dissociation constant (K d) values of these selected aptamers were determined. The lowest K d values of two potential aptamers (i.e., No. 4 and No. 5) were, respectively, 0.10162 ± 0.0111 and 0.03224 ± 0.00819 μM, which were much lower than previously reported lowest K d value (i.e., 0.766 μM) of CAP aptamer. Moreover, compared with No. 4, aptamer No. 5 had higher binding rate, which is quite different among those with CAP and with CAP’s structural analogs (i.e., thiamphenicol (TAP) and florfenicol (FF)). These results indicated that the potential aptamer No. 5 with highest specificity and affinity for CAP would be an ideal aptamer for future detection of residual CAP in animal-sourced food.  相似文献   

14.
Bacterial kidney disease (BKD) is a major health problem of salmonids, affecting both wild and cultured salmon. The disease is caused by Renibacterium salmoninarum (Rs), a fastidious, slow-growing and strongly Gram-positive diplobacillus that produces chronic, systemic infection characterized by granulomatous lesions in the kidney and other organs, often resulting in death. Fast detection of the pathogen is important to limit the spread of the disease, particularly in hatcheries or aquaculture facilities. Aptamers are increasingly replacing conventional antibodies as platforms for the development of rapid diagnostic tools. In this work, we describe the first instance of isolating and characterizing a ssDNA aptamer that binds with high affinity to p57 or major soluble antigen (MSA), the principal antigen found on the cell wall surface of Rs. Specifically, in this study a construct of the full-length protein containing a DNA binding domain (MSA-R2c) was utilized as target. Aptamers were isolated from a pool of random sequences using GO-SELEX (graphene oxide-systematic evolution of ligands by exponential enrichment) protocol. The selection generated multiple aptamers with conserved motifs in the random region. One aptamer with high frequency of occurrence in different clones was characterized and found to display a strong binding affinity to MSA-R2c with a Kd of 3.0 ± 0.6 nM. The aptamer could be potentially utilized for the future development of a sensor for rapid and onsite detection of Rs in water or in infected salmonids, replacing time-consuming and costly lab analyses.  相似文献   

15.
Purines and their derivatives are highly important molecules in biology for nucleic acid synthesis, energy storage, and signaling. Although many DNA aptamers have been obtained for binding adenine derivatives such as adenosine, adenosine monophosphate, and adenosine triphosphate, success for the specific binding of guanosine has been limited. Instead of performing new aptamer selections, we report herein a base-excision strategy to engineer existing aptamers to bind guanosine. Both a Na+-binding aptamer and the classical adenosine aptamer have been manipulated as base-excising scaffolds. A total of seven guanosine aptamers were designed, of which the G16-deleted Na+ aptamer showed the highest bindng specificity and affinity for guanosine with an apparent dissociation constant of 0.78 mm . Single monophosphate difference in the target molecule was also recognizable. The generality of both the aptamer scaffold and excised site were systematically studied. Overall, this work provides a few guanosine binding aptamers by using a non-SELEX method. It also provides deeper insights into the engineering of aptamers for molecular recognition.  相似文献   

16.
SELEX (systematic evolution of ligands by exponential enrichment) is a process that involves the progressive purification from a combinatorial library of nucleic acid ligands with a high affinity for a particular target by repeated rounds of partitioning and amplification. With the development of aptamer technology over the last decade, various modified SELEX processes have arisen that allow various aptamers to be developed against a wide variety of molecules, irrespective of the target size. In the present review, the separation methods used in such SELEX processes are reviewed.  相似文献   

17.
Foodborne diseases caused by pathogens are one of the major problems in food safety. Convenient and sensitive point-of-care rapid diagnostic tests for food-borne pathogens have been a long-felt need of clinicians. Commonly used methods for pathogen detection rely on conventional culture-based tests, antibody-based assays and polymerase chain reaction (PCR)-based techniques. These methods are costly, laborious and time-consuming. Herein, we present a simple and sensitive aptamer based biosensor for rapid detection of Escherichia coli O157:H7 (E. coli O157:H7). In this assay, two different aptamers specific for the outmembrane of E. coli O157:H7 were used. One of the aptamers was used for magnetic bead enrichment, and the other was used as a signal reporter for this pathogen, which was amplified by isothermal strand displacement amplification (SDA) and further detected by a lateral flow biosensor. Only the captured aptamers on cell membrane were amplified, limitations of conventional DNA amplification based method such as false-positive can be largely reduced. The generated signals (red bands on the test zone of a lateral flow strip) can be unambiguously read out by the naked eye. As low as 10 colony forming units (CFU) of E. coli O157:H7 were detected in this study. Without DNA extraction, the reduced handling and simpler equipment requirement render this assay a simple and rapid alternative to conventional methods.  相似文献   

18.
As promising molecular probes for in vivo tumor imaging, aptamers without modification remain problematic due to insufficient serum stability and unabiding imaging window. To address this problem, a novel locked nucleic acid (LNA)/DNA chimeric aptamer probe was developed through proper LNA incorporation and supplemented 3′-3′-thymidine (3′-3′-T) capping. TD05, a DNA aptamer against lymphoma Ramos cells, being used as the model, a series of modification strategies were designed and optimized with different positions, numbers and combinations. It was revealed that the combined use of LNA and 3′-3′-T had a synergistic effect, and with the increase of LNA substitution in stem region, the serum stability of TD05 was gradually enhanced while its affinity and specificity were perfectly maintained to Ramos cells. Particularly, TD05.6 with 7-base pair-LNA substitution exhibited the significantly elevated detection stability half-life from ∼0.5 h of TD05 to 5–6 h of TD05.6 for target cells in serum. Moreover, a much slower clearance rate in tumor-bearing mice was also observed for TD05.6, thus leading to the greatly extended tumor imaging window from <150 min of TD05 to >600 min of TD05.6. This strategy might be of great potentials to generate more aptamer probes that are stable and nuclease-resistant for tumor diagnosis in real biological systems.  相似文献   

19.
This paper describes the measurement of the binding affinities of two bifunctional RNA aptamers to their respective ligands. The aptamers comprise either a theophylline or malachite green binding sequence fused to a streptavidin binding sequence. These bifunctional aptamers are shown to bind simultaneously to both the small ligand and to streptavidin whether in free solution or on gold surfaces. Binding isotherms for both interactions were measured by different physiochemical techniques: surface plasmon resonance, fluorescence spectroscopy and dynamic light scattering. Both qualitatively and quantitatively there is little difference in binding affinities between the bifunctional aptamers and their monofunctional components. The respective Kd values for streptavidin binding in the monofunctional aptamer and in the theophylline bifunctional aptamer were 12 nM and 65 nM, respectively whilst the Kd values for theophylline binding in the monofunctional aptamer and the streptavidin bifunctional aptamer were 300 nM and 120 nM. These results are consistent with treating each aptamer sequence as a module that can be combined with others without significant loss of function. This allows for the use of streptavidin based immobilization strategies without either the cost of biotinylated dNTPs or the variable yields associated with the chemical biotinylation of RNA.  相似文献   

20.
DNA aptamers are integrated into synthetic hydrogel networks with the aim of creating hydrogels that undergo volume changes when exposed to target molecules. Specifically, single‐stranded DNA aptamers in cDNA‐bound, extended state are incorporated into hydrogel networks as cross‐links, so that the nanoscale conformational change of DNA aptamers upon binding to target molecules will induce macroscopic volume decreases of hydrogels. Hydrogels incorporating adenosine triphosphate (ATP)–binding aptamers undergo controllable volume decreases of up to 40.3 ± 4.6% when exposed to ATP, depending on the concentration of DNA aptamers incorporated in the hydrogel network, temperature, and target molecule concentration. Importantly, this approach can be generalized to aptamer sequences with distinct binding targets, as demonstrated here that hydrogels incorporating an insulin‐binding aptamer undergo volume changes in response to soluble insulin. This work provides an example of bioinspired hydrogels that undergo macroscopic volume changes that stem from conformational shifts in resident DNA‐based cross‐links.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号