首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Burns C  Spendel WU  Puckett S  Pacey GE 《Talanta》2006,69(4):873-876
Unmodified and modified gold nanoparticles are proposed as sensors using the red to blue transition as an indicator. This work indicates that ionic content is an important variable to track in analytical samples and during the sensor fabrication processes. Mono and multivalent salts where the titrants for a standard gold nanoparticle solution. Multivalent cation salt titrants exhibited a greater sensitivity to color change than monovalent cation salts. The data suggest that specific surface adsorption is the predominant mechanism for the red to blue color change not aggregation. The 3-7 nm Debye length for divalent cations versus the 0.5-1.5 nm for monovalent cations indicates surface electrodynamic resonance effects are an important factor in the observed color changes.  相似文献   

2.
The porosity of 1‐hexanethiol‐functionalised gold nanoparticle films was assessed and utilised as chemiresistor sensors. Electrochemical capacitance measurements showed that the accessibility of electrolytes of different ionic strengths into the pores depended on the thickness of the electric double layer formed. A large variation in capacitance was measured in 0.01–1000 mM NaClO4, implying a wide pore size distribution. The change in morphology of the nanoparticle films upon storage in air, water and ethanol for two weeks was investigated. There was a significant decrease in the electrochemical capacitance at high electrolyte concentrations for the ethanol‐stored films compared to the freshly‐prepared films suggesting a decrease in the number of small pores of radii in the range of 0.3–3 nm. This was further supported by optical topographical measurements where a decrease in the thickness of ethanol‐stored films was observed relative to the freshly‐prepared films. The porous nature of the nanoparticle films was found to have an effect on the chemical sensing behaviour. When used as chemiresistor sensors, for the detection of heptane in water, the ethanol‐stored films provided larger resistance changes and longer response times. This suggests that the more densely packed ethanol‐stored films provided more sites that enabled film swelling, and that diffusion of the analyte occurred through the narrower water‐filled pores. This demonstrates the effect of different storage conditions on film morphology and subsequently sensor response.  相似文献   

3.
We investigate the response dynamics of 1-hexanethiol-functionalized gold nanoparticle chemiresistors exposed to the analyte octane in aqueous solution. The dynamic response is studied as a function of the analyte-water flow velocity, the thickness of the gold nanoparticle film and the analyte concentration. A theoretical model for analyte limited mass-transport is used to model the analyte diffusion into the film, the partitioning of the analyte into the 1-hexanethiol capping layers and the subsequent swelling of the film. The degree of swelling is then used to calculate the increase of the electron tunnel resistance between adjacent nanoparticles which determines the resistance change of the film. In particular, the effect of the nonlinear relationship between resistance and swelling on the dynamic response is investigated at high analyte concentration. Good agreement between experiment and the theoretical model is achieved.  相似文献   

4.
The thioglucose-capped gold nanoparticles have been prepared by the chemical reduction of HAuCl4 using thioglucose as the reducing and capping agent, which displays selective colorimetric detection of fluoride ion in 10 mM HEPES buffer at physiological pH.  相似文献   

5.
A method based on use of functionalized gold nanoparticles on polyethylenimine film has been developed for colorimetric detection of immunoglobulin G (IgG). The immunogold nanoparticles were immobilized on quartz slides by recognition between antibody and antigen, with the antigen chemically adsorbed on the polyethylenimine film. By measurement of the UV–visible spectra of the immobilized immunogold, detection of h-IgG was achieved. The detection limit for h-IgG by use of this method can be as low as 0.01 μg mL−1. This method is quite promising for numerous applications in immunoassay. Figure  相似文献   

6.
In this study, we have proposed a novel strategy for the rapid identification and high sensitive detection of different kinds of cancer cells by means of electrochemical and contact angle measurements. A simple, unlabeled method based on the functionalized Au nanoparticles (GNPs) modified interface has been utilized to distinguish the different cancer cells, including lung cancer cells, liver cancer cells, drug sensitive leukemia K562/B.W cells and drug resistant leukemia K562/ADM cells. The relevant results indicate that under optimal conditions, this method can provide the quantitative determination of cancer cells, with a detection limit of ∼103 cells mL−1. Our observations demonstrate that the difference in the hydrophilic properties for target cellular surfaces and in the uptake efficiency of the anticancer drug daunorubicin for different cancer cells could be readily chosen as the elements of cancer identification and sensitive detection. This raises the possibility to advance the promising clinic diagnosis and monitoring of tumors with the aim of successful chemotherapy of human cancers.  相似文献   

7.
The conformational changes of cyclohexyl acetylene (CHAL) on gold nanoparticle surfaces were investigated by means of concentration- and temperature-dependent surface-enhanced Raman scattering (SERS). Depending on concentrations and temperatures, the spectral changes of the acetylene ν(C≡C) stretching vibration on gold nanoparticles appeared to be more conspicuous than those of cyclohexyl ring modes. The density functional theory (DFT) calculation was performed at the level of B3LYP/6-31G++(d,p) to compare the energetic stability and vibrational frequencies of the various conformers of cyclohexanethiol (CHT) and CHAL. The DFT calculations were also carried out at the level of B3LYP/LACVP** on the CHAL molecule adsorbed on Au clusters at several sites to explain the spectral changes of the acetylene ν(C≡C) stretching vibration.  相似文献   

8.
A simple, rapid, sensitive and field-portable colorimetric technique for the determination of Cr(III) in aqueous solution based on an aggregation-induced color transition of gold nanoparticles (AuNPs) has been developed. AuNPs were first functionalized with a dithiocarbamate-modified N-benzyl-4-(pyridin-4-ylmethyl)aniline ligand (BP-DTC). Chelation of Cr(III) by several of these ligands, bound to different nanoparticles, led to nanoparticle aggregation in solution. This gave rise to a color change from wine-red to blue that was discernible by the naked eye and an easily measurable alteration in the extinction spectrum of the particles. The method could be used to determine Cr(III) with a detection limit of 31 ppb. Furthermore, selective detection of trace Cr(III) in aqueous solution in the presence of 12 other transition metal ions has been achieved. Toward the goal of practical applications, the sensor has been further evaluated with a view to monitoring Cr(III) in nutritional supplements and the blood of diabetes patients and also applied in the indirect determination of Cr(VI) in waste water.  相似文献   

9.
We report a simple and sensitive aptamer-based colorimetric detection of mercury ions (Hg2+) using unmodified gold nanoparticles as colorimetric probe. It is based on the fact that bare gold nanoparticles interact differently with short single-strand DNA and double-stranded DNA. The anti-Hg2+ aptamer is rich in thymine (T) and readily forms T–Hg2+–T configuration in the presence of Hg2+. By measuring color change or adsorption ratio, the bare gold nanoparticles can effectively differentiate the Hg2+-induced conformational change of the aptamer in the presence of a given salt with high concentration. The assay shows a linear response toward Hg2+ concentration through a five-decade range of 1 × 10−4 mol L−1 to 1 × 10−9 mol L−1. Even with the naked eye, we could identify micromolar Hg2+ concentrations within minutes. By using the spectrometric method, the detection limit was improved to the nanomolar range (0.6 nM). The assay shows excellent selectivity for Hg2+ over other metal cations including K+, Ba2+, Ni2+, Pb2+, Cu2+, Cd2+, Mg2+, Ca2+, Zn2+, Al3+, and Fe3+. The major advantages of this Hg2+ assay are its water-solubility, simplicity, low cost, visual colorimetry, and high sensitivity. This method provides a potentially useful tool for the Hg2+ detection.  相似文献   

10.
It was demonstrated recently that dramatic changes in the redox behaviour of gold/aqueous solution interfaces may be observed following either cathodic or thermal electrode pretreatment. Further work on the cathodic pretreatment of gold in acid solution revealed that as the activity of the gold surface was increased, its performance as a substrate for hydrogen gas evolution under constant potential conditions deteriorated. The change in activity of the gold atoms at the interface, which was attributed to a hydrogen embrittlement process (the occurrence of the latter was subsequently checked by surface microscopy), was confirmed, as in earlier work, by the appearance of a substantial anodic peak at ca. 0.5 V (RHE) in a post-activation positive sweep. Changes in the catalytic activity of a metal surface reflect the fact that the structure (or topography), thermodynamic activity and electronic properties of a surface are dependent not only on pretreatment but also, in the case of the hydrogen evolution reaction, vary with time during the course of reaction. As will be reported shortly, similar (and often more dramatic) time-dependent behaviour was observed for hydrogen gas evolution on other metal electrodes. Electronic Publication  相似文献   

11.
Cell-associated gold nanoparticles and nanoplates were produced when varying number of Yarrowia lipolytica cells were incubated with different concentrations of chloroauric acid (HAuCl4) at pH 4.5. With 109 cells ml−1 and 0.5 or 1.0 mM of the gold salt, the reaction mixtures developed a purple or golden red colour, respectively, and gold nanoparticles were synthesized. Nanoparticles of varying sizes were produced when 1010 cells ml−1 were incubated with 0.5, 1.0 or 2.0 mM chloroauric acid salt. With 3.0, 4.0 or 5.0 mM HAuCl4, nanoplates were also observed. With 1011 cells ml−1 nanoparticles were synthesized with almost all the gold salt concentrations. The cell-associated particles were released outside when nanoparticle-loaded cells were incubated at low temperature (20 °C) for 48 h. With increasing salt concentrations and a fixed number of cells, the size of the nanoparticles progressively increased. On the other hand, with increasing cell numbers and a constant gold salt concentration, the size of nanoparticles decreased. These results indicate that by varying the number of cells and the gold salt concentration, a variety of nanoparticles and nanoplates can be synthesized. Fourier transform infrared (FTIR) spectroscopy revealed the possible involvement of carboxyl, hydroxyl and amide groups on the cell surfaces in nanoparticle synthesis.  相似文献   

12.
Wei Sun  Peng Qin  Ruijun Zhao  Kui Jiao 《Talanta》2010,80(5):2177-138
In this paper a carbon ionic liquid electrode (CILE) was fabricated by using ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate ([EMIM]EtOSO3) as modifier and further gold nanoparticles were in situ electrodeposited on the surface of CILE. The fabricated Au/CILE was used as a new platform for the immobilization of hemoglobin (Hb) with the help of a Nafion film. Electrochemical experimental results indicated that direct electron transfer of Hb was realized on the surface of Au/CILE with a pair of well-defined quasi-reversible redox peaks appeared. The formal peak potential (E0) was obtained as −0.210 V (vs. SCE) in pH 7.0 phosphate buffer solution (PBS), which was the characteristic of Hb heme Fe(III)/Fe(II) redox couple. The fabricated Nafion/Hb/Au/CILE showed excellent electrocatalytic activity to the reduction of trichloroacetic acid (TCA) and the reduction peak current was in proportional to TCA concentration in the range from 0.2 to 18.0 mmol/L with the detection limit as 0.16 mmol/L (S/N = 3). The proposed electrode showed good stability and reproducibility, and it had the potential application as a new third-generation electrochemical biosensor.  相似文献   

13.
Song-Bai Zhang  Ru-Qin Yu 《Talanta》2007,71(4):1530-1535
A novel immunoassay strategy based on combination of chitosan (CHIT) and a gold nanoparticle (GNP) label has been developed. The susceptibility of CHIT to further chemical modifications due to the abundant amino groups is explored in order to covalently immobilize antibody (Ab) onto the (3-aminopropyl) triethoxysilane derivatized glass slide by cross-linking with glutaraldehyde (GA). After incubating in antigen (Ag) solution, the obtained substrate is immersed in GNP labeled antibody solution for signal generation. The two steps were repeated alternatively for three times, forming multilayer of gold nanoparticles via antigen-antibody specific reaction. Ultraviolet-visible (UV-vis) absorption spectrum is recorded to obtain quantitative information about the specific antigen. The presented immunoassay strategy is applied for determination of human serum albumin (HSA) as a model analyte. The immunoassay of HSA is specific. Compared to previous correlative work, the proposed immunosensing strategy shows some advantages, such as improved sensitivity as much more gold nanoparticles can be coupled to the functionalized surface making use of the abundant amino groups of CHIT. Moreover, a significantly extended linear detection range of 8.0-512.0 μg/mL is gained under the optimized experimental conditions. In particular, the presented biosensing method shows low cost and simplicity, and only a conventional UV-vis detector is involved.  相似文献   

14.
In this paper, we report that thin gold films can be prepared on the water/toluene interface by self-assembly of gold nanoparticles (NPs) and fullerene pyridyl derivatives. The assembled films were characterized using UV–vis spectroscopy and transmission electron microscope (TEM). The films show self-repairing and superhydrophobic properties.  相似文献   

15.
In this paper, we demonstrate a simple and sensitive colorimetric detection of cysteine based on the cysteine-mediated color change of ssDNA-stabilized gold nanoparticles (AuNPs). Cysteine is capable of absorbing onto AuNPs surfaces via the strong interaction between its thiol group and gold. ssDNA molecules which stabilize AuNPs against salt-induced aggregation are removed away by cysteine encapsulation on the AuNPs surfaces, resulting in a characteristic color change of AuNPs from red to blue as soon as salt is added. The ratio of absorptions at 640 to 525 nm (A 640/A 525) is linear dependent on the cysteine concentration in the range from 0.1 to 5 μM. Furthermore, amino acids other than cysteine cannot mediate the color change under the identical conditions due to the absence of thiol groups, suggesting the selectivity of the proposed method toward cysteine. The employment of complicated protocols and sophisticated processes such as the preparation of modified AuNPs are successfully avoided in design to realize the simple and low-cost cysteine detection; and the high sensitivity and low cost of the method is favorable for practical applications. Figure In the presence of cysteine, cysteine binds to the AuNPs surface via Au-S bond, spontaneously driving ssDNA molecules away from the nanoparticles, which leads to the AuNPs aggregation under the condition of NaCl introduction, and the corresponding color change from red to blue. However, the presence of other amino acids results in no color change due to the absence of thiol groups. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
Due to the unprecedented and ongoing nature of the coronavirus outbreak, the development of rapid immunoassays to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its highly contagious variants is an important and challenging task. Here, we report the development of polyclonal antibody-functionalized spherical gold nanoparticle biosensors as well as the influence of the nanoparticle sizes on the immunoassay response to detect the SARS-CoV-2 spike protein by dynamic light scattering. By monitoring the increment in the hydrodynamic diameter (ΔDH) by dynamic light scattering measurements in the antigen–antibody interaction, SARS-CoV-2 S-protein can be detected in only 5 min. The larger the nanoparticles, the larger ΔDH in the presence of spike protein. From adsorption isotherm, the calculated binding constant (KD) was 83 nM and the estimated limit of detection was 13 ng/mL (30 pM). The biosensor was stable up to 90 days at 4 °C. Therefore, the biosensor developed in this work could be potentially applied as a fast and sensible immunoassay to detect SARS-CoV-2 infection in patient samples.  相似文献   

18.
Severe thermal pretreatment of gold wire electrodes in an inert gas atmosphere resulted in the appearance of dramatic premonolayer oxidation responses, which in some instances commenced at 0.25 V (RHE), for the resulting active gold electrodes in aqueous acid media. Similar behaviour was reported earlier for platinum and gold activated by cathodic pretreatment in acid solution; these active noble metal surfaces are evidently more susceptible to oxidation than bulk copper. Such behaviour was attributed to the effect of surface disorder; many of the metal atoms at the interface are assumed to be in a very active, metastable state possessing quite low lattice stabilization energy. Premonolayer oxidation responses are again correlated with electrocatalytic behaviour and the existence of unusual chemisorption behaviour for molecules reacting at highly active states of metals is outlined. Electronic Publication  相似文献   

19.
Huang H  Li L  Zhou G  Liu Z  Ma Q  Feng Y  Zeng G  Tinnefeld P  He Z 《Talanta》2011,85(2):1013-1019
Melamine that can cause serious damage to the organs of animal or human beings was found to bind to polythymine via hydrogen bonding. With this novel discovery, colorimetric detection of melamine based on label-free and labeled gold nanoparticles was developed, respectively. Both of the methods revealed good selectivity for melamine over other components that may exist in milk and good anti-influence ability. The raw milk samples were pretreated according to the National standard method combined with a solid phase extraction monolithic column. The accurate quantification of melamine as low as 41.7 nM and 46.5 nM was obtained, respectively. It also guarantees fast and reliable readout with naked eyes, making visual detection possible. Further comparison between label-free and labeled based methods was discussed in this paper.  相似文献   

20.
Chen Z  Li L  Zhao H  Guo L  Mu X 《Talanta》2011,83(5):4039-1506
A simple, highly sensitive, and label-free electrochemical impedance spectroscopy (EIS) aptasensor based on an anti-lysozyme-aptamer as a molecular recognition element, was developed for the detection of lysozyme. Improvement in sensitivity was achieved by utilizing gold nanoparticles (AuNPs), which were electrodeposited onto the surface of a gold electrode, as a platform for immobilization of the aptamer. To quantify the amount of lysozyme, changes in the interfacial electron transfer resistance (Ret) of the aptasensor were monitored using the redox couple of an [Fe(CN)6]3−/4− probe. The Ret increased with lysozyme concentration. The plot of Ret against the logarithm of lysozyme concentration is linear over the range from 0.1 pM to 500 pM with a detection limit of 0.01 pM. The aptasensor also showed good selectivity for lysozyme without being affected by the presence of other proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号