首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Let E be a vector bundle of rank r over an irreducible smooth projective curve X defined over the field ${\overline{{\mathbb F}}_p}$ F ¯ p . For fixed integers ${r_1\, , \ldots\, , r_\nu}$ r 1 , ... , r ν with ${1\, \leq\, r_1\, <\, \cdots\, <\, r_\nu\, <\, r}$ 1 ≤ r 1 < ? < r ν < r , let ${\text{Fl}(E)}$ Fl ( E ) be the corresponding flag bundle over X associated to E. Let ${\xi\, \longrightarrow \, {\rm Fl}(E)}$ ξ ? Fl ( E ) be a line bundle such that for every pair of the form ${(C\, ,\phi)}$ ( C , ? ) , where C is an irreducible smooth projective curve defined over ${\overline{\mathbb F}_p}$ F ¯ p and ${\phi\, :\, C\, \longrightarrow\, {\rm Fl}(E)}$ ? : C ? Fl ( E ) is a nonconstant morphism, the inequality ${{\rm degree}(\phi^* \xi)\, > \, 0}$ degree ( ? ? ξ ) > 0 holds. We prove that the line bundle ${\xi}$ ξ is ample.  相似文献   

2.
Let ${(\phi, \psi)}$ be an (m, n)-valued pair of maps ${\phi, \psi : X \multimap Y}$ , where ${\phi}$ is an m-valued map and ${\psi}$ is n-valued, on connected finite polyhedra. A point ${x \in X}$ is a coincidence point of ${\phi}$ and ${\psi}$ if ${\phi(x) \cap \psi(x) \neq \emptyset}$ . We define a Nielsen coincidence number ${N(\phi : \psi)}$ which is a lower bound for the number of coincidence points of all (m, n)-valued pairs of maps homotopic to ${(\phi, \psi)}$ . We calculate ${N(\phi : \psi)}$ for all (m, n)-valued pairs of maps of the circle and show that ${N(\phi : \psi)}$ is a sharp lower bound in that setting. Specifically, if ${\phi}$ is of degree a and ${\psi}$ of degree b, then ${N(\phi : \psi) = \frac{|an - bm|}{\langle m, n \rangle}}$ , where ${\langle m, n \rangle}$ is the greatest common divisor of m and n. In order to carry out the calculation, we obtain results, of independent interest, for n-valued maps of compact connected Lie groups that relate the Nielsen fixed point number of Helga Schirmer to the Nielsen root number of Michael Brown.  相似文献   

3.
4.
Let ${\mathcal{L}}$ be a subspace lattice on a complex Banach space X and δ be a linear mapping from ${alg\mathcal{L}}$ into B(X) such that for every ${A \in alg\mathcal{L}, 2\delta(A^2)=\delta(A)A + A\delta(A)}$ or ${\delta(A^3) = A\delta(A)A}$ . We show that if one of the following holds (1) ${\vee\{L : L \in \mathcal{J}(\mathcal{L})\}=X}$ , (2) ${\wedge\{L_-: L \in \mathcal{J}(\mathcal{L})\}=(0)}$ and X is reflexive, then δ is a centralizer. We also show that if ${\mathcal{L}}$ is a CSL and δ is a linear mapping from ${alg\mathcal{L}}$ into itself, then δ is a centralizer.  相似文献   

5.
We study deformations of Fourier–Mukai transforms in general complex analytic settings. Suppose X and Y are complex manifolds, and let P be a coherent sheaf on X ×  Y. Suppose that the Fourier–Mukai transform ${\Phi}$ Φ given by the kernel P is an equivalence between the coherent derived categories of X and of Y. Suppose also that we are given a formal *-quantization ${\mathbb{X}}$ X of X. Our main result is that ${\mathbb{X}}$ X gives rise to a unique formal *-quantization ${\mathbb{Y}}$ Y of Y. For the statement to hold, *-quantizations must be understood in the framework of stacks of algebroids. The quantization ${\mathbb{Y}}$ Y is uniquely determined by the condition that ${\Phi}$ Φ deforms to an equivalence between the derived categories of ${\mathbb{X}}$ X and ${\mathbb{Y}}$ Y . Equivalently, the condition is that P deforms to a coherent sheaf ${\tilde{P}}$ P ~ on the formal *-quantization ${\mathbb{X} \times\mathbb{Y}^{op}}$ X × Y o p of X × Y; here ${\mathbb{Y}^{op}}$ Y o p is the opposite of the quantization ${\mathbb{Y}}$ Y .  相似文献   

6.
We prove that for each universal algebra ${(A, \mathcal{A})}$ of cardinality ${|A| \geq 2}$ and infinite set X of cardinality ${|X| \geq | \mathcal{A}|}$ , the X-th power ${(A^{X}, \mathcal{A}^{X})}$ of the algebra ${(A, \mathcal{A})}$ contains a free subset ${\mathcal{F} \subset A^{X}}$ of cardinality ${|\mathcal{F}| = 2^{|X|}}$ . This generalizes the classical Fichtenholtz–Kantorovitch–Hausdorff result on the existence of an independent family ${\mathcal{I} \subset \mathcal{P}(X)}$ of cardinality ${|\mathcal{I}| = |\mathcal{P}(X)|}$ in the Boolean algebra ${\mathcal{P}(X)}$ of subsets of an infinite set X.  相似文献   

7.
Let ${\|\cdot\|_{\psi}}$ be the absolute norm on ${\mathbb{R}^2}$ corresponding to a convex function ${\psi}$ on [0, 1] and ${C_{\text{NJ}}(\|\cdot\|_{\psi})}$ its von Neumann–Jordan constant. It is known that ${\max \{M_1^2, M_2^2\} \leq C_{\text{NJ}}(\| \cdot \|_{\psi}) \leq M_1^2 M_2^2}$ , where ${M_1 = \max_{0 \leq t \leq 1} \psi(t)/ \psi_2(t)}$ , ${M_2 = \max_{0\leq t \leq 1} \psi_2(t)/ \psi(t)}$ and ${\psi_2}$ is the corresponding function to the ? 2-norm. In this paper, we shall present a necessary and sufficient condition for the above right side inequality to attain equality. A corollary, which is valid for the complex case, will cover a couple of previous results. Similar results for the James constant will be presented.  相似文献   

8.
We generalize the well-known Lax-Milgram theorem on the Hilbert space to that on the Banach space. Suppose that ${a(\cdot, \cdot)}$ is a continuous bilinear form on the product ${X\times Y}$ of Banach spaces X and Y, where Y is reflexive. If null spaces N X and N Y associated with ${a(\cdot, \cdot)}$ have complements in X and in Y, respectively, and if ${a(\cdot, \cdot)}$ satisfies certain variational inequalities both in X and in Y, then for every ${F \in N_Y^{\perp}}$ , i.e., ${F \in Y^{\ast}}$ with ${F(\phi) = 0}$ for all ${\phi \in N_Y}$ , there exists at least one ${u \in X}$ such that ${a(u, \varphi) = F(\varphi)}$ holds for all ${\varphi \in Y}$ with ${\|u\|_X \le C\|F\|_{Y^{\ast}}}$ . We apply our result to several existence theorems of L r -solutions to the elliptic system of boundary value problems appearing in the fluid mechanics.  相似文献   

9.
It is assumed that a Kripke–Joyal semantics ${\mathcal{A} = \left\langle \mathbb{C},{\rm Cov}, {\it F},\Vdash \right\rangle}$ A = C , Cov , F , ? has been defined for a first-order language ${\mathcal{L}}$ L . To transform ${\mathbb{C}}$ C into a Heyting algebra ${\overline{\mathbb{C}}}$ C ¯ on which the forcing relation is preserved, a standard construction is used to obtain a complete Heyting algebra made up of cribles of ${\mathbb{C}}$ C . A pretopology ${\overline{{\rm Cov}}}$ Cov ¯ is defined on ${\overline{\mathbb{C}}}$ C ¯ using the pretopology on ${\mathbb{C}}$ C . A sheaf ${\overline{{\it F}}}$ F ¯ is made up of sections of F that obey functoriality. A forcing relation ${\overline{\Vdash}}$ ? ¯ is defined and it is shown that ${\overline{\mathcal{A}} = \left\langle \overline{\mathbb{C}},\overline{\rm{Cov}},\overline{{\it F}}, \overline{\Vdash} \right\rangle }$ A ¯ = C ¯ , Cov ¯ , F ¯ , ? ¯ is a Kripke–Joyal semantics that faithfully preserves the notion of forcing of ${\mathcal{A}}$ A . That is to say, an object a of ${\mathbb{C}Ob}$ C O b forces a sentence with respect to ${\mathcal{A}}$ A if and only if the maximal a-crible forces it with respect to ${\overline{\mathcal{A}}}$ A ¯ . This reduces a Kripke–Joyal semantics defined over an arbitrary site to a Kripke–Joyal semantics defined over a site which is based on a complete Heyting algebra.  相似文献   

10.
We say that a triangle $T$ T tiles the polygon $\mathcal A $ A if $\mathcal A $ A can be decomposed into finitely many non-overlapping triangles similar to $T$ T . A tiling is called regular if there are two angles of the triangles, say $\alpha $ α and $\beta $ β , such that at each vertex $V$ V of the tiling the number of triangles having $V$ V as a vertex and having angle $\alpha $ α at $V$ V is the same as the number of triangles having angle $\beta $ β at $V$ V . Otherwise the tiling is called irregular. Let $\mathcal P (\delta )$ P ( δ ) be a parallelogram with acute angle $\delta $ δ . In this paper we prove that if the parallelogram $\mathcal P (\delta )$ P ( δ ) is tiled with similar triangles of angles $(\alpha , \beta , \pi /2)$ ( α , β , π / 2 ) , then $(\alpha , \beta )=(\delta , \pi /2-\delta )$ ( α , β ) = ( δ , π / 2 - δ ) or $(\alpha , \beta )=(\delta /2, \pi /2-\delta /2)$ ( α , β ) = ( δ / 2 , π / 2 - δ / 2 ) , and if the tiling is regular, then only the first case can occur.  相似文献   

11.
For $x\in [0,1)$ x ∈ [ 0 , 1 ) , let $x=[a_1(x), a_2(x),\ldots ]$ x = [ a 1 ( x ) , a 2 ( x ) , ... ] be its continued fraction expansion with partial quotients $\{a_n(x), n\ge 1\}$ { a n ( x ) , n ≥ 1 } . Let $\psi : \mathbb{N } \rightarrow \mathbb{N }$ ψ : N → N be a function with $\psi (n)/n\rightarrow \infty $ ψ ( n ) / n → ∞ as $n\rightarrow \infty $ n → ∞ . In this note, the fast Khintchine spectrum, i.e., the Hausdorff dimension of the set $$\begin{aligned} E(\psi ):=\left\{ x\in [0,1): \lim _{n\rightarrow \infty }\frac{1}{\psi (n)}\sum _{j=1}^n\log a_j(x)=1\right\} \end{aligned}$$ E ( ψ ) : = x ∈ [ 0 , 1 ) : lim n → ∞ 1 ψ ( n ) ∑ j = 1 n log a j ( x ) = 1 is completely determined without any extra condition on $\psi $ ψ . This fills a gap of the former work in Fan et al. (Ergod Theor Dyn Syst 29:73–109, 2009).  相似文献   

12.
In this paper, we describe a relationship between the simplest examples of arithmetic theta series. The first of these are the weight 1 theta series ${\widehat{\phi}_{\mathcal C}(\tau)}$ defined using arithmetic 0-cycles on the moduli space ${\mathcal C}$ of elliptic curves with CM by the ring of integers ${O_{\kappa}}$ of an imaginary quadratic field. The second such series ${\widehat{\phi}_{\mathcal M}(\tau)}$ has weight 3/2 and takes values in the arithmetic Chow group ${\widehat{{\rm CH}}^1(\mathcal{M})}$ of the arithmetic surface associated to an indefinite quaternion algebra ${B/\mathbb{Q}}$ . For an embedding ${O_\kappa \rightarrow O_B}$ , a maximal order in B, and a two sided O B -ideal Λ, there is a morphism ${j_\Lambda:{\mathcal C} \rightarrow {\mathcal M}}$ and a pullback ${j_\Lambda^*: \widehat{{\rm CH}}^1(\mathcal{M}) \rightarrow \widehat{{\rm CH}}^1(\mathcal C)}$ . Our main result is an expression for the pullback ${j^*_\Lambda \widehat{\phi}_{\mathcal M}(\tau)}$ as a linear combination of products of ${\widehat{\phi}_{\mathcal C}(\tau)}$ ’s and classical weight ${\frac{1}{2}}$ theta series.  相似文献   

13.
We study CR functions with values in a complex Fréchet space X. We prove a vector valued analog to a result by Baouendi and Trèves (Ann Math 113:387–421, 1981), i.e. any X-valued CR function of Teodorescu class B 1 may be locally approximated by X-valued holomorphic functions on ${{\mathbb C}^n}$ . We show that any CR function ${u \in C^\omega (M, X)}$ on a real analytic CR hypersurface ${M \subset {\mathbb {C}}^n}$ admits a unique holomorphic extension ${f \in {\mathcal {O}}(\Omega, X)}$ to some open neighborhood ${\Omega \supset M}$ .  相似文献   

14.
Let A be an expansive dilation on ${{\mathbb R}^n}$ and w a Muckenhoupt ${\mathcal A_\infty(A)}$ weight. In this paper, for all parameters ${\alpha\in{\mathbb R} }$ and ${p,q\in(0,\infty)}$ , the authors identify the dual spaces of weighted anisotropic Besov spaces ${\dot B^\alpha_{p,q}(A;w)}$ and Triebel?CLizorkin spaces ${\dot F^\alpha_{p,q}(A;w)}$ with some new weighted Besov-type and Triebel?CLizorkin-type spaces. The corresponding results on anisotropic Besov spaces ${\dot B^\alpha_{p,q}(A; \mu)}$ and Triebel?CLizorkin spaces ${\dot F^\alpha_{p,q}(A; \mu)}$ associated with ${\rho_A}$ -doubling measure??? are also established. All results are new even for the classical weighted Besov and Triebel?CLizorkin spaces in the isotropic setting. In particular, the authors also obtain the ${\varphi}$ -transform characterization of the dual spaces of the classical weighted Hardy spaces on ${{\mathbb R}^n}$ .  相似文献   

15.
By a $\mathfrak{B}$ -regular variety, we mean a smooth projective variety over $\mathbb{C}$ admitting an algebraic action of the upper triangular Borel subgroup $\mathfrak{B} \subset {\text{SL}}_{2} {\left( \mathbb{C} \right)}$ such that the unipotent radical in $\mathfrak{B}$ has a unique fixed point. A result of Brion and the first author [4] describes the equivariant cohomology algebra (over $\mathbb{C}$ ) of a $\mathfrak{B}$ -regular variety X as the coordinate ring of a remarkable affine curve in $X \times \mathbb{P}^{1}$ . The main result of this paper uses this fact to classify the $\mathfrak{B}$ -invariant subvarieties Y of a $\mathfrak{B}$ -regular variety X for which the restriction map i Y : H *(X) → H *(Y) is surjective.  相似文献   

16.
Let ${\mathcal{L}}$ be a ${\mathcal{J}}$ -subspace lattice on a Banach space X over the real or complex field ${\mathbb{F}}$ with dim X ≥ 2 and Alg ${\mathcal{L}}$ be the associated ${\mathcal{J}}$ -subspace lattice algebra. For any scalar ${\xi \in \mathbb{F}}$ , there is a characterization of any linear map L : Alg ${\mathcal{L} \rightarrow {\rm Alg} {\mathcal{L}}}$ satisfying ${L([A,B]_\xi) = [L(A),B]_\xi + [A,L(B)]_\xi}$ for any ${A, B \in{\rm Alg} {\mathcal{L}}}$ with AB = 0 (rep. ${[A,B]_ \xi = AB - \xi BA = 0}$ ) given. Based on these results, a complete characterization of (generalized) ξ-Lie derivations for all possible ξ on Alg ${\mathcal{L}}$ is obtained.  相似文献   

17.
Let M be a shift invariant subspace in the vector-valued Hardy space ${H_{E}^{2}(\mathbb{D})}$ H E 2 ( D ) . The Beurling–Lax–Halmos theorem says that M can be completely characterized by ${\mathcal{B}(E)}$ B ( E ) -valued inner function ${\Theta}$ Θ . When ${E = H^{2}(\mathbb{D}),\,H_{E}^{2}(\mathbb{D})}$ E = H 2 ( D ) , H E 2 ( D ) is the Hardy space on the bidisk ${H^{2}(\mathbb{D}^2)}$ H 2 ( D 2 ) . Recently, Qin and Yang (Proc Am Math Soc, 2013) determines the operator valued inner function ${\Theta(z)}$ Θ ( z ) for two well-known invariant subspaces in ${H^{2}(\mathbb{D}^{2})}$ H 2 ( D 2 ) . This paper generalizes the ${\Theta(z)}$ Θ ( z ) by Qin and Yang (Proc Am Math Soc, 2013) and deal with the structure of ${M = {\Theta}(z)H^{2}(\mathbb{D}^{2})}$ M = Θ ( z ) H 2 ( D 2 ) when M is an invariant subspace in ${H^{2}(\mathbb{D}^{2})}$ H 2 ( D 2 ) . Unitary equivalence, spectrum of the compression operator and core operator are studied in this paper.  相似文献   

18.
In this paper we study cluster algebras $\mathcal{A}$ of type $A_2^{(1)}$ . We solve the recurrence relations among the cluster variables (which form a T-system of type $A_2^{(1)}$ ). We solve the recurrence relations among the coefficients of $\mathcal{A}$ (which form a Y-system of type $A_2^{(1)}$ ). In $\mathcal{A}$ there is a natural notion of positivity. We find linear bases B of $\mathcal{A}$ such that positive linear combinations of elements of B coincide with the cone of positive elements. We call these bases atomic bases of $\mathcal{A}$ . These are the analogue of the “canonical bases” found by Sherman and Zelevinsky in type $A_{1}^{(1)}$ . Every atomic basis consists of cluster monomials together with extra elements. We provide explicit expressions for the elements of such bases in every cluster. We prove that the elements of B are parameterized by ?3 via their g-vectors in every cluster. We prove that the denominator vector map in every acyclic seed of $\mathcal{A}$ restricts to a bijection between B and ?3. We find explicit recurrence relations to express every element of $\mathcal{A}$ as linear combinations of elements of B.  相似文献   

19.
Let a trace be a computably enumerable set of natural numbers such that ${V^{[m]} = \{n : \langle n, m\rangle \in V \}}$ V [ m ] = { n : 〈 n , m 〉 ∈ V } is finite for all m, where ${\langle^{.},^{.}\rangle}$ 〈 . , . 〉 denotes an appropriate pairing function. After looking at some basic properties of traces like that there is no uniform enumeration of all traces, we prove varied results on traceability and variants thereof, where a function ${f : \mathbb{N} \rightarrow \mathbb{N}}$ f : N → N is traceable via a trace V if for all ${m, \langle f(m), m\rangle \in V.}$ m , 〈 f ( m ) , m 〉 ∈ V . Then we turn to lattices $$\textit{\textbf{L}}_{tr}(V) = (\{W : V \subseteq W \, {\rm and} \, W \, {\rm a} \, {\rm trace}\}, \, \subseteq),$$ L t r ( V ) = ( { W : V ? W and W a trace } , ? ) , V a trace. Here, we study the close relationship to ${\mathcal{E} = (\{A : A \subseteq \mathbb{N} \quad c.e.\}, \subseteq)}$ E = ( { A : A ? N c . e . } , ? ) , automorphisms, isomorphisms, and isomorphic embeddings.  相似文献   

20.
Let $\mathbf{K }:=\left\{ \mathbf{x }: g(\mathbf{x })\le 1\right\} $ K : = x : g ( x ) ≤ 1 be the compact (and not necessarily convex) sub-level set of some homogeneous polynomial $g$ g . Assume that the only knowledge about $\mathbf{K }$ K is the degree of $g$ g as well as the moments of the Lebesgue measure on $\mathbf{K }$ K up to order $2d$ 2 d . Then the vector of coefficients of $g$ g is the solution of a simple linear system whose associated matrix is nonsingular. In other words, the moments up to order $2d$ 2 d of the Lebesgue measure on $\mathbf{K }$ K encode all information on the homogeneous polynomial $g$ g that defines $\mathbf{K }$ K (in fact, only moments of order $d$ d and $2d$ 2 d are needed).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号