首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
[Cp*RhIII]‐catalyzed C H activation of arenes assisted by an oxidizing N O or N N directing group has allowed the construction of a number of hetercycles. In contrast, a polar N O bond is well‐known to undergo O‐atom transfer (OAT) to alkynes. Despite the liability of N O bonds in both C H activation and OAT, these two important areas evolved separately. In this report, [Cp*RhIII] catalysts integrate both areas in an efficient redox‐neutral coupling of quinoline N‐oxides with alkynes to afford α‐(8‐quinolyl)acetophenones. In this process the N O bond acts as both a directing group for C H activation and as an O‐atom donor.  相似文献   

2.
α‐Arylated carbonyl compounds are commonly occurring motifs in biologically interesting molecules and are therefore of high interest to the pharmaceutical industry. Conventional procedures for their synthesis often result in complications in scale‐up, such as the use of stoichiometric amounts of toxic reagents and harsh reaction conditions. Over the last decade, significant efforts have been directed towards the development of metal‐catalyzed α‐arylations of carbonyl compounds as an alternative synthetic approach that operates under milder conditions. This Review summarizes the developments in this area to date, with a focus on how the substrate scope has been expanded through selection of the most appropriate synthetic method, such as the careful choice of ligands, precatalysts, bases, and reaction conditions.  相似文献   

3.
A copper‐based catalytic technique for the regioselective ortho C H cyanation of vinylarenes has been developed. This method provides an effective means for the selective functionalization of vinylarene derivatives. A copper‐catalyzed cyanative dearomatization mechanism is proposed to account for the regiochemical course of this reaction.  相似文献   

4.
Reported herein is an iridium‐catalyzed, regioselective silylation of the aromatic C H bonds of benzylamines and the benzylic C H bonds of 2,N‐dialkylanilines. In this process, (hydrido)silyl amines, generated in situ by dehydrogenative coupling of benzylamine or aniline with diethylsilane, undergo selective silylation at the C H bond γ to the amino group. The products of this silylation are suitable for subsequent oxidation, halogenation, and cross‐coupling reactions to deliver benzylamine and arylamine derivatives.  相似文献   

5.
The efficient RhI‐catalyzed cycloisomerization of benzylallene‐alkynes produced the tricyclo[9.4.0.03,8]pentadecapentaene skeleton through a C H bond activation in good yields. A plausible reaction mechanism proceeds via oxidative addition of the acetylenic C H bond to RhI, an ene‐type cyclization to the vinylidenecarbene–RhI intermediate, and an electrophilic aromatic substitution with the vinylidenecarbene species. It was proposed based on deuteration and competition experiments.  相似文献   

6.
A new method for the synthesis of highly substituted naphthyridine‐based polyheteroaromatic compounds in high yields proceeds through rhodium(III)‐catalyzed multiple C H bond cleavage and C C and C N bond formation in a one‐pot process. Such highly substituted polyheteroaromatic compounds have attracted much attention because of their unique π‐conjugation, which make them suitable materials for organic semiconductors and luminescent materials. Furthermore, a possible mechanism, which involves multiple chelation‐assisted ortho C H activation, alkyne insertion, and reductive elimination, is proposed for this transformation.  相似文献   

7.
8.
9.
10.
The selective functionalization of carbon–carbon σ bonds is a synthetic strategy that offers uncommon retrosynthetic disconnections. Despite progress in C C activation and its great importance, the development of asymmetric reactions lags behind. Rhodium(I)‐catalyzed selective oxidative additions into enantiotopic C C bonds in cyclobutanones are reported. Even operating at a reaction temperature of 130 °C, the process is characterized by outstanding enantioselectivity with the e.r. generally greater than 99.5:0.5. The intermediate rhodacycle is shown to react with a wide variety of tethered olefins to deliver complex bicyclic ketones in high yields.  相似文献   

11.
The selective radical/radical cross‐coupling of two different organic radicals is a great challenge due to the inherent activity of radicals. In this paper, a copper‐catalyzed radical/radical C H/P H cross‐coupling has been developed. It provides a radical/radical cross‐coupling in a selective manner. This work offers a simple way toward β‐ketophosphonates by oxidative coupling of aryl ketone o‐acetyloximes with phosphine oxides using CuCl as catalyst and PCy3 as ligand in dioxane under N2 atmosphere at 130 °C for 5 h, and yields ranging from 47 % to 86 %. The preliminary mechanistic studies by electron paramagnetic resonance (EPR) showed that, 1) the reduction of ketone o‐acetyloximes generates iminium radicals, which could isomerize to α‐sp3‐carbon radical species; 2) phosphorus radicals were generated from the oxidation of phosphine oxides. Various aryl ketone o‐acetyloximes and phosphine oxides were suitable for this transformation.  相似文献   

12.
A grand opening : N‐Boc‐N‐alkylsulfamides are effective substrates for the title transformation. Oxidative cyclization is highly chemoselective as well as being both stereospecific and diastereoselective. With the advent of new protocols that facilitate ring opening of the six‐membered‐ring heterocyclic products, access to differentially protected 1,3‐diamines has been made possible (see scheme).

  相似文献   


13.
Direct ruthenium‐catalyzed C C coupling of alkynes and vicinal diols to form β,γ‐unsaturated ketones occurs with complete levels of regioselectivity and good to complete control over the alkene geometry. Exposure of the reaction products to substoichiometric quantities of p‐toluenesulfonic acid induces cyclodehydration to form tetrasubstituted furans. These alkyne‐diol hydrohydroxyalkylations contribute to a growing body of merged redox‐construction events that bypass the use of premetalated reagents and, hence, stoichiometric quantities of metallic by‐products.  相似文献   

14.
We report the first enantioselective C C bond formation through C O bond cleavage using aryl ester counterparts. This method is characterized by its wide substrate scope and results in the formation of quaternary stereogenic centers with high yields and asymmetric induction.  相似文献   

15.
Schließen und öffnen : N‐Boc‐N‐alkylsulfamide sind geeignete Substrate für die Titelreaktion. Die oxidative Cyclisierung im ersten Schritt ist hoch chemoselektiv sowie stereospezifisch und diastereoselektiv. Mit neuen Verfahren zur Öffnung der dabei erhaltenen Sechsringheterocyclen werden unterschiedlich geschützte 1,3‐Diamine zugänglich (siehe Schema).

  相似文献   


16.
17.
A two‐step reaction to convert terminal alkynes into triborylalkenes is reported. In the first step, the terminal alkyne and pinacolborane (HBpin) are converted into an alkynylboronate, which is catalyzed by an iridium complex supported by a SiNN pincer ligand. In the second step, treatment of the reaction mixture with CO generates a new catalyst which mediates dehydrogenative diboration of alkynylboronate with pinacolborane. The mechanism of the diboration remains unclear but it does not proceed via intermediacy of hydroboration products or via B2pin2.  相似文献   

18.
19.
20.
Disclosed herein is a RhIII‐catalyzed chelation‐assisted activation of unreactive C H bonds, thus enabling an intermolecular amidation to provide a practical and step‐economic route to 2‐(pyridin‐2‐yl)ethanamine derivatives. Substrates with other N‐donor groups are also compatible with the amidation. This protocol proceeds at room temperature, has a relatively broad functional‐group tolerance and high selectivity, and demonstrates the potential of rhodium(III) in the promotive functionalization of unreactive C H bonds. A rhodacycle having a SbF6 counterion was identified as a plausible intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号