首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of lipophilic gold nanoparticles (AuNPs) circa 5 nm in diameter and having a mixed organic layer consisting of 1‐dodecanethiol and 1‐(11‐mercaptoundecyl) pyridinium bromide was synthesised by reacting tetraoctylammonium bromide stabilised AuNPs in toluene with different mixtures of the two thiolate ligands. A bidentate ω‐alkylthiolate calix[4]arene derivative was instead used as a functional protecting layer on AgNPs of approximately 3 nm. The functionalised nanoparticles were characterised by transmission electron microscopy (TEM), and by UV/Vis and X‐ray photoelectron spectroscopy (XPS). Recognition of the pyridinium moieties loaded on the AuNPs by the calix[4]arene units immobilised on the AgNPs was demonstrated in solution of weakly polar solvents by UV/Vis titrations and DLS measurements. The extent of Au‐AgNPs aggregation, shown through the low‐energy shift of their surface plasmon bands (SPB), was strongly dependent on the loading of the pyridinium moieties present in the organic layer of the AuNPs. Extensive aggregation between dodecanethiol‐capped AuNPs and the Ag calix[4]arene‐functionalised NPs was also promoted by the action of a simple N‐octyl pyridinium difunctional supramolecular linker. This linker can interdigitate through its long fatty tail in the organic layer of the dodecanethiol‐capped AuNPs, and simultaneously interact through its pyridinium moiety with the calix[4]arene units at the surface of the modified AgNPs.  相似文献   

2.
The assembly of gold nanoparticles (AuNPs) on a hydrogenated Si(100) surface, mediated by a series of hierarchical and reversible complexation processes, is reported. The proposed multi‐step sequence involves a redox‐active ditopic guest and suitable calix[n]arene‐based hosts, used as functional organic monolayers of the two inorganic components. Surface reactions and controlled release of AuNPs have been monitored by application of XPS, atomic force microscopy (AFM), field‐emission scanning electron microscopy (FESEM) and electrochemistry.  相似文献   

3.
Two cystine-bearing 1,3-bridged calix[4]arenes were used as the coatings of the quartz crystal microbalance (QCM) with gold electrodes. The two calix[4]arene derivatives were self-assembled onto the gold electrode surface by the covalent attachment between the di-sulfur and gold. The compound of cystine-bearing bi-phenylalanine 1,3-bridged calix[4]arene (CPC) with longer alkyl chain had better self-assembled capacity onto the fresh surfaces of gold electrode than that of cystine-bearing 1,3-bridged calix[4]arene (CC) with comparably shorter alkyl chain.The modified QCM sensors were used to recognize the butylamine isomers in gas. The results showed that the QCM coated with both compounds had preferential affinity to n-butylamine, then i-butylamine, t-butylamine in the range of low concentrations, indicating that in the recognition process, the steric hindrance effect played an important role when forming complex with guest molecules. When the concentrations of the analytes were increased, the polarity and the magnetism of the butylamine became determinative factors. The reversibility was improved greatly and the equilibrium time was much shorter on the self-assembled film than on the film obtained by dropping coating.  相似文献   

4.
This study focused on the use of NMR techniques as a tool for the investigation of complex formation between proparacaine and cyclodextrins (CDs) or p‐sulfonic acid calix[6]arene. The pH dependence of the complexation of proparacaine with β‐CD and p‐sulfonic acid calix[6]arene was studied and binding constants were determined by 1H NMR spectroscopy [diffusion‐ordered spectroscopy (DOSY)] for the charged and uncharged forms of the local anesthetic in β‐CD and p‐sulfonic acid calix[6]arene. The stoichiometries of the complexes was determined and rotating frame Overhauser enhancement spectroscopy (ROESY) 1D experiments revealed details of the molecular insertion of proparacaine into the β‐CD and p‐sulfonic acid calix[6]arene cavities. The results unambiguously demonstrate that pH is an important factor for the development of supramolecular architectures based on β‐CD and p‐sulfonic acid calix[6]arene as the host molecules. Such host–guest complexes were investigated in view of their potential use as new therapeutic formulations, designed to increase the bioavailability and/or to decrease the systemic toxicity of proparacaine in anesthesia procedures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
With a variation in reaction conditions, 1, 4‐bis (2‐(2‐chloroethoxy)ethoxy)‐calix[6]arene (3) and l,3,5‐tris(2‐(2‐chloroethoxy) ethoxy)‐calix [6] arene (4) or 4 and 4‐chloroethoxyethoxy‐calix[6]crown‐3 (5) were selectively synthesized from p‐tert‐butyl‐calix [6] arene and 2‐(2‐chloroethoxy)ethyltosylate. l,3–4,6‐p‐tert‐butylcalix[6]‐bis‐crown‐3 (6) with (u,u,u,d,d,d) conformation and 1,3–4,5‐p‐tert‐butylcalix[6]‐biscrown‐3 (7) with self‐anchored (u,u, u, u, u, d) conformation were synthesized through an intramolecularly ring‐closing condensation of 1, 4‐bis (2‐(2‐chloroethoxy)ethoxy)‐p‐tert‐butyl‐calix[6]arene (3) in 25% and 15% yield, respectively. Using 5 instead of 3, only 7 was obtained in 65% high yield. 6 and 7 show different complexation properties toward alkali metal and ammonium ions.  相似文献   

6.
The synthesis of two new flavin substituted calix[4]arene derivatives, 9 and 10 , is described. The first flavin substituted calix[4]arene derivative 9 was synthesized by the reaction of 3‐methylalloxazine ( 5 ) with 25,27‐bis(3‐bromopropoxy)‐26,28‐dihydroxy‐5,11,17,23‐tetra(tert‐butyl)calix[4]arene ( 4 ) in high yield (92%). The other derivative 10 was prepared from 3‐methylalloxazine‐1‐acetic acid ( 7 ) and 25,27‐bis(3‐cyanopropoxy)calix[4]arene ( 3 ). All new compounds were characterized by a combination of FT‐IR and 1H‐NMR spectroscopy, and elemental‐analysis techniques.  相似文献   

7.
Ibis paper reports the properties of the novel tetra‐p‐nitro‐tetra‐O‐alkyl‐calix[4]arenes (alkyl= n‐C4H9, 1; n‐C8H17 2; n‐C12H25, 3; n‐C16H33, 4). X‐ray crystallographic analysis and 1H NMR revealed that they exist as pinched‐cone conformation in crystal or cone conformation in solution. EFISH experiments at 1064 nm in CHCl3, indicated that tetra‐p‐nitro‐tetra‐O‐butyl‐calix[4]arene (1) has higher hyperpolarizability β, values than the corresponding reference compound p‐nitro‐phenyl butyl ether, without red shift of the charge transfer band. Compounds 2, 3 and 4 with longer alkyl chains can form monolayer at the air/water.  相似文献   

8.
The self‐assembly and characterization of water‐soluble calix[4]arene‐based molecular capsules ( 1?2 ) is reported. The assemblies are the result of ionic interactions between negatively charged calix[4]arenes 1 a and 1 b , functionalized at the upper rim with amino acid moieties, and a positively charged tetraamidiniumcalix[4]arene 2 . The formation of the molecular capsules is studied by 1H NMR spectroscopy, ESI mass spectrometry (ESI‐MS), and isothermal titration calorimetry (ITC). A molecular docking protocol was used to identify potential guest molecules for the self‐assembled capsule 1 a?2 . Experimental guest encapsulation studies indicate that capsule 1 a?2 is an effective host for both charged (N‐methylquinuclidinium cation) and neutral molecules (6‐amino‐2‐methylquinoline) in water.  相似文献   

9.
Linear polysilanes, [{PhHSi}x{Ph(RSCH2CH2CH2)Si}1?x]n [R = n‐dodecyl ( 1 ), n‐hexyl ( 2 ), n‐butyl ( 3 )], have been synthesized and their reactivity with HAuCl4·3H2O (Polymer:Au = 10:1, RT, toluene) examined to gain an insight into the role of polymer‐supported thioether groups in the stabilization of in situ generated gold nanoparticles (AuNPs). The method allows a simple approach for expeditious synthesis of assemblies of AuNPs comprising of well‐separated individual nanoparticles of average diameter 4.5 ± 1.9 nm. In this regard, polysilane 1 with dodecyl side chains serves as a superior matrix than 2 and 3 and confers long shelf‐life stability to the nanoparticle assembly. The structural attributes are preserved in Au–Pd bimetallic nanoparticles which have been synthesized from the polymer‐gold nanoassembly. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

10.
Novel macrocyclic monooxa-diselkylene-1,ω-dioxy substituted calix[4]arene derivatives 1a-5a were synthesized by the reaction of calix[4]arene dibromides 1-5 with the disodium salt of bis(2-selenylethyl)ether in the yields between 28% and 64%. Their structures were characterized by proton and carbon NMR spectra. X-Ray structure analysis of la further confirmed the cone conformation of compounds 1a-5a. An interesting host-guest complex of la with dichloromethane via CH/π and C1/π interactions was elucidated. Extraction experiments showed that these novel monooxa-diselkylene-1,ω-dioxy substituted calix[4]arene derivatives 1a-5a had strong extraction ability towards mercury ion. The interaction of Hg^2+with the calix ligand has also been investigated by 1^H NMR titration.  相似文献   

11.
New calix[4]arene‐based bis‐phosphonites, bis‐phosphites and bis‐O‐acylphosphites were synthesized and characterized. Treatment of these P‐ligands with selected rhodium and platinum precursors led to mononuclear complexes that were satisfactorily characterized. The solid state structure of the dirhodium(I) complex 14 has been determined by X‐ray diffraction. The two rhodium centres are bridged by two chloro ligands; one rhodium atom is further coordinated by calix[4]arene phosphorus atoms and the other by cyclooctadiene. The new calix[4]arene P‐ligands were tested in the Rh(I) catalyzed hydroformylation of 1‐octene. All Rh(I) complexes catalyzed the reaction leading to high chemoselectivity with regard to the formation of aldehydes. Yields and n/iso‐selectivities depended on the reaction conditions. Average yields of 80 % and n/iso‐ratios of about 1.3 to 1.5 were observed. High yields of aldehydes can be achieved using the methoxy substituted P‐ligands at low Rh:ligand ratios.  相似文献   

12.
The p-nitrophenylazo calix[4] arene derivatives la-ld with nonlinear optical(NLO)properties were prepared by the diazo-coupling reaction of calix[4]arene with p-nitrophenyl diazonium.The diazotization reaction of p-nltroaniline was caried out with isoamyl nitrite as a source of nitrous acid in EtONa/EtOH under refluxing conditon.X-Ray crystallographic analysis and ^1H NMR sptectra reveal that they exist as cone conformation in crystal state or in soution.HRS measurements at 1064 nm in THF indicate that p-nitrophenylazo calix[4]arenes have higher hyperpolarizability βz values than the corresponding reference compound 4-(4-nitrophenylazo)-2,6-dimethyl-phenol,without red shift of the charge transfer band.The tetrakis p-nitropheylazo calix[4]arene(2)with longer alkyl chains can form monolayer aht the air/water interface.  相似文献   

13.
首次合成一系列杯[10]冠醚。通过将对叔丁基杯[10]芳烃和乙二醇双对甲苯磺酸酯或多甘醇双对甲苯磺酸酯在K2CO3/甲苯或Cs2CO3/丙酮体系中反应,得到一系列杯[10]冠醚:1,2-杯[10]冠-4、1,3-杯[10]冠-2、1,2-,1,3-杯[10]冠-3、1,4-杯[10]冠-4、和1,6-杯[10]冠-4。  相似文献   

14.
Two giant calix[n]phyrin derivatives namely calix[8]‐ ( 4 ) and calix[16]phyrin ( 5 ), involving two and four BF2 units, respectively, were prepared through the condensation of the bis‐naphthobipyrrolylmethene‐BF2 complex ( 3 ) with pentafluorobenzaldehyde. Calix[n]phyrins 4 and 5 display extremely high extinction coefficients (3.67 and 4.82×105 m ?1 cm?1, respectively) in the near‐IR region, which was taken as initial evidence for strong excitonic coupling within these cyclic multi‐chromophoric systems. Detailed insights into the effect of excitonic coupling dynamics on the electronic structure and photophysical properties of the macrocycles came from fluorescence, time‐correlated single‐photon counting (TCSPC) and transient absorption (TA) measurements. Support for these experimental findings came from theoretical studies. Theory and experiment confirmed that the coupling between the excitons depends on the specifics of the calix[n]phyrin structure, not just its size.  相似文献   

15.
A germacalix‐crown, 25,27‐bis[1‐(3‐trimethylgermylpropyl)oxy]calix[4]arene‐crown‐6, 1,3‐alternate ( 1a ), and its carbon analog, 25,27‐bis‐[1‐(4,4‐dimethylpentyl)oxy]calix[4]arene‐crown‐6, 1,3‐alternate ( 1b ), were prepared and their structures were confirmed by elemental analysis and 1H and 13C NMR spectroscopy. A cation transport test indicated that both compounds exhibited much the same cation transport ability, so that the role of the germanium moiety in capturing and transporting counteranions is not yet clear. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The synthesis of two 1,3‐bis(4‐ethynylbenzyloxy)calix[4]arenes, 5,11,17,23‐tetrakis(1,1‐dimethylethyl)‐25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene ( 1 ) and 25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene ( 2 ), was accomplished through Sonogashira coupling of appropriate calixarene derivatives. Methods for the polymerization of these bifunctional building blocks with Rh(I) as a catalyst, leading ultimately to conjugated polymers having calix[4]arene units incorporated into the main chain, were explored. Calixarenes 1 and 2 were efficiently polymerized with rhodium‐based initiators and afforded the conjugated polymers poly{5,11,17,23‐tetrakis(1,1‐dimethylethyl)‐25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene} ( poly 1 ) and poly{25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene}. Depending on the conditions, high conversions and good yields were obtained. The effects of adding cocatalysts (NHEt2 and/or PPh3) were studied in connection with the number‐average molecular weight and the molecular weight distribution of the resultant polymer ( poly 1 ) and tentatively correlated with the formation of low‐molecular‐weight materials. A catalytic system containing triphenylphosphine as the sole additive ([Rh(nbd)Cl]2; [Rh]/[PPh3] = 0.5) proved to be the best for the polymerization of ptert‐butylcalixarene compound 1 . Linear polymers having high number‐average molecular weights (up to 1.1 × 105 g mol?1) with low polydispersities were produced under these conditions. For debutylated homologue 2 , its polymerization was best carried out in the absence of any added cocatalyst. A cyclopolymerization route, comprising the intramolecular ring closing of the calix[4]arene pendant ethynyl groups followed by an intermolecular propagation step, is advanced to explain the results. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7054–7070, 2006  相似文献   

17.
New photoreactive calixarene derivatives containing spiro ortho ester groups (calixarenes 3a–3c ) were synthesized by the reaction of 2‐bromomethyl‐1,4,6‐trioxaspiro[4.4]nonane with 2,8,14,20‐tetramethyl‐4,6,10,12,16,18,22,24‐octakis(carboxymethoxy)calix[4]resorcinarene, 5,11,17,23,29,35‐hexamethyl‐37,38,39,40,41,42‐hexakis(carboxymethoxy)calix[6]arene, and 5,11,17,23,29,35,41,47‐octa‐tert‐butyl‐49,50,51,52, 53,54,55,56‐octakis‐(carboxymethoxy)calix[8]arene, which were prepared by the reaction of C‐methylcalix[4]resorcinarene, p‐methylcalix[6]arene, and ptert‐butylcalix[8]arene, respectively. The thermal stability of the obtained calixarene derivatives containing spiro ortho ester groups was examined with thermogravimetric analysis, and it was found that these calixarene derivatives had good thermal stability. The photoinitiated cationic polymerization of spiro ortho ester groups in calixarene derivatives 3a–3c was examined with certain photoacid generators in the film state. Interestingly enough, the reaction of calixarene derivatives did not proceed with only photoirradiation; however, the reaction proceeded smoothly when the photoirradiation was followed by heating. Furthermore, calixarene 3a , composed of a C‐methylcalix[4]resorcinarene structure, showed the highest photochemical reactivity in this reaction system. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1293–1302, 2002  相似文献   

18.
Theoretical studies of 1,3‐alternate‐25,27‐bis(1‐methoxyethyl)calix[4]arene‐azacrown‐5 ( L1 ), 1,3‐alternate‐25,27‐bis(1‐methoxyethyl)calix[4]arene‐N‐phenyl‐azacrown‐5 ( L2 ), and the corresponding complexes M+/ L of L1 and L2 with the alkali‐metal cations: Na+, K+, and Rb+ have been performed using density functional theory (DFT) at B3LYP/6‐31G* level. The optimized geometric structures obtained from DFT calculations are used to perform natural bond orbital (NBO) analysis. The two main types of driving force metal–ligand and cation–π interactions are investigated. The results indicate that intermolecular electrostatic interactions are dominant and the electron‐donating oxygen offer lone pair electrons to the contacting RY* (1‐center Rydberg) or LP* (1‐center valence antibond lone pair) orbitals of M+ (Na+, K+, and Rb+). What's more, the cation–π interactions between the metal ion and π‐orbitals of the two rotated benzene rings play a minor role. For all the structures, the most pronounced changes in geometric parameters upon interaction are observed in the calix[4]arene molecule. In addition, an extra pendant phenyl group attached to nitrogen can promote metal complexation by 3D encapsulation greatly. In addition, the enthalpies of complexation reaction and hydrated cation exchange reaction had been studied by the calculated thermodynamic data. The calculated results of hydrated cation exchange reaction are in a good agreement with the experimental data for the complexes. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

19.
A novel 1,3‐alternate 25,27‐bis‐[cyanopropyloxy]‐26,28‐bis‐[3‐propyloxy]‐calix[4]arene‐bonded silica gel stationary phase (CalixPrCN) was prepared and its structure was confirmed by ATR‐FTIR spectroscopy and elemental analysis. The CalixPrCN phase was characterized in terms of its surface coverage, hydrophobic selectivity, aromatic selectivity, shape selectivity, hydrogen bonding capacity, residue metal content, and silanol activity based on Tanaka, Lindner, and SMR 870 test protocols. The effect of the acetonitrile content on the retention and selectivity of the selected neutral, basic, and acidic solutes was studied. The neutral and acidic analytes exhibited classical RP behavior, in which retention time decreases with increasing acetonitrile content. In contrast, basic analytes showed an increase in retention at low and high percentages of acetonitrile, forming “U‐shaped” retention profiles. The new calixarene phase was compared with previously reported 1,3‐alternate 25,27‐bis‐[propyloxy]‐26,28‐bis‐[3‐propyloxy]‐calix[4]arene stationary phase and commercial cyanopropyl column. The results indicate that the CalixPrCN stationary phase behaves like RP packing; however, inclusion complex formation, dipole–dipole, and π–π interactions seem to be involved in the separation process. The selectivity of this phase was demonstrated in separation of polynuclear aromatic hydrocarbons, non‐steroidal anti‐inflammatory drugs, and sulfonamides as analytes.  相似文献   

20.
A new oligomeric calix[4]arene‐thiacrown‐4 ( 5 ) was synthesized via a condensation reaction of 5,11,17,23‐tetra‐tert‐butyl‐25,27‐bis‐(4‐aminobenzyloxy)‐calix[4]arene‐thiacrown‐4 ( 4 ) with adipoyl dichloride. In this oligomerization reaction only five/six calix[4]arene‐thiacrown‐4 units were linked in the oligomeric chain. The complexation studies of 5 were made with liquid–liquid‐ extraction and solid–liquid‐sorption procedures. For comparison, the extraction efficiencies of monomers 1 , 3 , and 4 to selected transition metals are reported. The selectivity of monomers 3 and 4 toward Cu2+, Hg2+, and Pb2+ was lost after oligomerization in the two‐phase extraction systems. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 186–193, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号