首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the formation and surface behavior of Pt(II) and Pd(II) complexes with ligand systems derived from two nitrile-functionalized ionic liquids (ILs) in solution using angle-resolved X-ray photoelectron spectroscopy (ARXPS). These ligand systems enabled a high solubility of the metal complexes in IL solution. The complexes were prepared by simple ligand substitution under vacuum conditions in defined excess of the coordinating ILs, [C3CNC1Im][Tf2N] and [C1CNC1Pip][Tf2N], to immediately yield solutions of the final products. The ILs differ in the cationic head group and the chain length of the functionalized substituent. Our XPS measurements on the neat ILs gave insights in the electronic properties of the coordinating substituents revealing differences in donation capability and stability of the complexes. Investigations on the composition of the outermost surface layers using ARXPS revealed no surface affinity of the nitrile-functionalized chains in the neat ILs. Solutions of the formed complexes in the nitrile ILs showed homogeneous distribution of the solute at the surface with the heterocyclic moieties preferentially orientated towards the vacuum, while the metal centers are rather located further away from the IL/vacuum interface.  相似文献   

2.
Ultrahigh vacuum (UHV) surface science techniques are used to study the heterogeneous catalytic dehydrogenation of a liquid organic hydrogen carrier in its liquid state close to the conditions of real catalysis. For this purpose, perhydrocarbazole (PH), otherwise volatile under UHV, is covalently linked as functional group to an imidazolium cation, forming a non‐volatile ionic liquid (IL). The catalysed dehydrogenation of the PH unit as a function of temperature is investigated for a Pt foil covered by a macroscopically thick PH‐IL film and for Pd particles suspended in the PH‐IL film, and for PH‐IL on Au as inert support. X‐ray photoelectron spectroscopy and thermal desorption spectroscopy allows us to follow in situ the catalysed transition of perhydrocarbazole to carbazole at technical reaction temperatures. The data demonstrate the crucial role of the Pt and Pd catalysts in order to shift the dehydrogenation temperature below the critical temperature of thermal decomposition.  相似文献   

3.
4.
Using angle-resolved X-ray photoelectron spectroscopy (ARXPS), we investigate the topmost nanometers of various binary ionic liquid (IL) mixtures at different temperatures in the liquid state. The mixtures consist of ILs with the same [PF6] anion but two different cations, namely 3-methyl-1-(3,3,4,4,4-pentafluorobutyl)imidazolium hexafluorophosphate, [PFBMIm][PF6], and 1-butyl-3-methylimidazolium hexafluorophosphate, [C4C1Im][PF6], with 10, 25, 50 and 75 mol % content of [PFBMIm][PF6]. We observe a preferential enrichment of the fluorinated chain in the topmost layer, relative to the bulk composition, which is most pronounced for the lowest content of [PFBMIm][PF6]. Upon cooling the mixtures stepwise from 95 °C until surface charging effects in XPS indicate solidification, we observe a pronounced increase in surface enrichment of the fluorinated chain with decreasing temperature in the liquid state. In contrast to the mixtures with lower [PFBMIm][PF6] contents, cooling the 75 mol % mixture additionally shows an abrupt decrease of the fluorinated chain signal before complete solidification occurs, which is assigned to partial precipitation effects.  相似文献   

5.
We have performed a systematic study addressing the surface behavior of a variety of functionalized and non‐functionalized ionic liquids (ILs). From angle‐resolved X‐ray photoelectron spectroscopy, detailed conclusions on the surface enrichment of the functional groups and the molecular orientation of the cations and anions is derived. The systems include imidazolium‐based ILs methylated at the C2 position, a phenyl‐functionalized IL, an alkoxysilane‐functionalized IL, halo‐functionalized ILs, thioether‐functionalized ILs, and amine‐functionalized ILs. The results are compared with the results for corresponding non‐functionalized ILs where available. Generally, enrichment of the functional group at the surface is only observed for systems that have very weak interaction between the functional group and the ionic head groups.  相似文献   

6.
In the solvent extraction process, the importance of an extractant (or ligand) and a diluent is inferred from their respective physicochemical properties. We have brought together all the recent results reported on the mixture of different extractants dissolved in a well-known ionic liquid diluent: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) in the form of a review and aimed to emphasize the role of ligand polarity and structure on the physicochemical properties of an ionic liquid (IL) diluent. Some of the most important properties such as dynamic viscosity (η), absolute density ( ), energy of activation (Ea), coefficient of thermal expansion (α), phase separation time (PST), refractive index (n), etc., have been discussed meticulously in the paper. The effect of ligand structure on the aggregation behaviour of IL phase and the physicochemical properties of gamma irradiated solvent phases containing different ligands and their solution with IL phase also have been deliberated in detail.  相似文献   

7.
The interaction of the ionic liquid [C4C1Im][BF4] with anatase TiO2, a model photoanode material, has been studied using a combination of synchrotron radiation photoelectron spectroscopy and near‐edge X‐ray absorption fine structure spectroscopy. The system is of interest as a model for fundamental electrolyte–electrode and dye‐sensitized solar cells. The initial interaction involves degradation of the [BF4]? anion, resulting in incorporation of F into O vacancies in the anatase surface. At low coverages, [C4C1Im][BF4] is found to order at the anatase(101) surface via electrostatic attraction, with the imidazolium ring oriented 32±4° from the anatase TiO2 surface. As the coverage of ionic liquid increases, the influence of the oxide surface on the topmost layers is reduced and the ordering is lost.  相似文献   

8.
We investigated the adsorption, surface enrichment, ion exchange, and on-surface metathesis of ultrathin mixed IL films on Ag(111). We stepwise deposited 0.5 ML of the protic IL diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]) and 1.0 ML of the aprotic IL 1-methyl-3-octylimidazolium hexafluorophosphate ([C8C1Im][PF6]) at around 90 K. Thereafter, the resulting layered frozen film was heated to 550 K, and the thermally induced phenomena were monitored in situ by angle-resolved X-ray photoelectron spectroscopy. Between 135 and 200 K, [TfO] anions at the Ag(111) surface are exchanged by [PF6] anions and enriched together with [C8C1Im]+ cations at the IL/vacuum interface. Upon further heating, [dema][PF6] and [OMIm][PF6] desorb selectively at ∼235 and ∼380 K, respectively. Hereby, a wetting layer of pure [C8C1Im][TfO] is formed by on-surface metathesis at the IL/metal interface, which completely desorbs at ∼480 K. For comparison, ion enrichment at the vacuum/IL interface was also studied in macroscopic IL mixtures, where no influence of the solid support is expected.  相似文献   

9.
Homogeneous catalysis in room‐temperature ionic liquids (ILs) constitutes a most interesting field of research with high potential in technical applications. As concerns the hydrogenation of unsaturated hydrocarbons, Wilkinson’s compound RhCl(PPh3)3 represents a catalyst that provides high selectivity and activity. Herein, we demonstrate the application of infrared spectroscopy to the quantitative analysis of the Wilkinson catalyst in the IL 1‐ethyl‐3‐methylimidazolium acetate ([EMIM][OAc]). Our study demonstrates for the first time the quantitative, accurate and reproducible determination of the concentration of a rhodium catalyst by means of IR spectroscopy and, moreover, allows the investigation of intermolecular interactions. Spectral features, located mainly in the fingerprint region of the IR spectrum, are identified revealing the influence of the dissolved catalyst on the IL’s vibrational structure. In particular, the ring‐bending mode of the imidazolium ring shows a frequency shift as a function of catalyst concentration, probably due to hydrogen‐bond formation between the IL cation and the Rh complex. The results show the potential of IR spectroscopy both for application as a quick process control technology in catalytic processes and as a tool for better understanding of IL–catalyst interactions.  相似文献   

10.
We present the first systematic study of the influence of temperature on the degree of surface enrichment of 1-alkyl-3-methylimidazolium-based ionic liquids (ILs). Using angle-resolved X-ray photoelectron spectroscopy, we demonstrate that the degree of surface enrichment strongly decreases with increasing temperature for all the studied ILs. For ILs with the same cation, but different anions, [C8C1Im]Br, [C8C1Im][TfO] and [C8C1Im][Tf2N], no significant differences of the temperature-induced partial loss of surface enrichment are found. Measurements for [C4C1Im][TfO], [C8C1Im][TfO] and [C18C1Im][TfO] indicate a small effect of the chain length. For [C18C1Im][TfO], a continuous decrease of alkyl surface enrichment is found with increasing temperature, with no abrupt changes at the phase-transition temperature from the smectic A to the isotropic phase, indicating that the surface enrichment is not affected by this phase transition.  相似文献   

11.
We investigated the surface tension and surface composition of various mixtures of the two ionic liquids (ILs) 1-methyl-3-octyl-imidazolium hexafluorophosphate [C8C1Im][PF6] and 1,3-bis(polyethylene glycol)imidazolium iodide [(mPEG2)2Im]I in the temperature range from 230 to 370 K under ultraclean vacuum conditions. The surface tension was measured using a newly developed apparatus, and the surface composition was determined by angle-resolved X-ray photoelectron spectroscopy (ARXPS). In the pure ILs, the alkyl chains of [C8C1Im][PF6] and the PEG chains of [(mPEG2)2Im]I are enriched at the IL/vacuum interface. In the mixtures, a strong selective surface enrichment of the alkyl chains occurs, which is most pronounced at low [C8C1Im][PF6] contents. For the surface tension, strong deviations from an ideal mixing behaviour take place. By applying a simple approach based on the surface composition of the mixtures as deduced from ARXPS, we are able to predict and reproduce the experimentally measured temperature-dependent surface tension values with astonishingly high accuracy.  相似文献   

12.
13.
Hydroformylation of oct‐1‐ene leading to nonanal (denoted by n) and 2‐methyloctanal (denoted by iso), in a novel series of caprolactam‐based and common imidazolium‐based ionic liquid crystals (ILCs; see Fig. 1) carried out for the first time (caprolactam=hexahydro‐2H‐azepin‐2‐one) (Scheme). Variation of the chain length (n) of the alkyl substituent (Cn) at the caprolactam cation (CP+) from n=12 to 18 caused the n/iso ratios to vary from 1.7 to 2.9. Meanwhile, the TOF (turnover frequency) decreased from 148 to 122 mol mol−1 h−1. Hydroformylation in the imidazolium‐based ILCs revealed that [C16MIm]⋅BF4 (n/iso 5.2, TOF 969 mol mol−1 h−1) was more favorable than [C16MIm]⋅MsO (n/iso 3.7, TOF 969 mol mol−1 h−1) for the formation of the unbranched aldehyde. Although the n/iso ratio in caprolactam‐based ILCs was lower than that in imidazolium‐based ILCs, the conversions are higher in the former ILCs on the whole. It should be noted that the lamellar mesophase has a strong effect on the regioselectivity and TOF of the hydroformylation. Also, it is evident that the influences of different ILCs on the hydroformylation under the various reaction conditions are greatly different. The identification of the reaction products was established by GC and GC/MS analyses.  相似文献   

14.
15.
The surfactant TX-100 can be dissolved in ionic liquid bmimPF6 and decrease the surface tension of 1-buty1-3-methylimidazolium hexafluorophosphate (bmimPF6) solutions. Here, we confirmed that in this new system, the pure solvents need rearrangement at the air-wate rinterface at the initial stage. The dynamic surface tension (DST) study shows that at the initial adsorption stage, the adsorption model of surfactant accords with the diffusion-controlled adsorption mechanism, and the dilute ionic liquids solutions is further close to the diffusion-controlled adsorption.  相似文献   

16.
The reactions of copper, silver, and gold with the imidazolium-based polyhalide ionic liquid (IL) [C6C1Im][Br2I] were investigated by using X-ray photoelectron spectroscopy (XPS), weight-loss measurements, and gas-phase mass spectrometry. All three Group 11 metals are strongly corroded by the IL at moderate temperatures to give a very high content of dissolved CuI, AgI, and AuI species. The IL–metal solutions are stable against contact with water and air. The replacement of imidazolium with inorganic sodium cations decreased metal corrosion rates by orders of magnitude. Our results clearly indicate metal oxidation by iodide from dibromoiodide anions to form molecular iodine and anionic [Br-MI-Br] (M=Cu, Ag, Au) complexes stabilized by imidazolium counterions. From experiments with a trihalide IL with imidazolium methylated at the 2-position, we ruled out the formation of imidazole–carbene as a cause of the observed corrosion. In contrast to Group 11 metals, molybdenum is inert against the trihalide IL, which is attributed to surface passivation.  相似文献   

17.
18.
Recently, we demonstrated that Pt catalyst complexes dissolved in the ionic liquid (IL) [C4C1Im][PF6] can be deliberately enriched at the IL surface by introducing perfluorinated substituents, which act like buoys dragging the metal complex towards the surface. Herein, we extend our previous angle-resolved X-ray photoelectron spectroscopy (ARXPS) studies at complex concentrations between 30 and 5 %mol down to 1 %mol and present complementary surface tension pendant drop (PD) measurements under ultraclean vacuum conditions. This combination allows for connecting the microscopic information on the IL/gas interface derived from ARXPS with the macroscopic property surface tension. The surface enrichment of the Pt complexes is found to be most pronounced at 1 %mol. It also displays a strong temperature dependence, which was not observed for 5 %mol and above, where the surface is already saturated with the complex. The surface enrichment deduced from ARXPS is also reflected by the pronounced decrease in surface tension with increasing concentration of the catalyst. We furthermore observe by ARXPS and PD a much stronger surface affinity of the buoy-complex as compared to the free ligands in solution. Our results are highly interesting for an optimum design of IL-based catalyst systems with large contact areas to the surrounding reactant/product phase, such as in supported IL phase (SILP) catalysis.  相似文献   

19.
20.
Ultrathin films of the ionic liquid (IL) 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMIM][Tf2N], are prepared on a glass substrate by means of an in situ thermal‐evaporation/condensation process under ultrahigh‐vacuum conditions. By using X‐ray photoelectron spectroscopy (XPS), it is demonstrated that the first layer of the IL film grows two dimensionally, followed by the three‐dimensional growth of successive layers. The first molecular layer consists of a bilayer, with the [EMIM]+ cations in contact to the surface and the [Tf2N]? anions at the vacuum side. The ultrathin IL films are found to be stable under ambient conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号