首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(toluidine blue) nanowires (PTBNWs) with an average diameter of ca. 200 nm and length of ca. 5 μm were synthesized for the first time using a template‐directed electropolymerization strategy with a nanopore polycarbonate (PC) membrane template. Their morphological characterization was carried out by scanning electron microscopy (SEM) and transmission electron microscope (TEM). By electrochemical polymerization, horseradish peroxidase (HRP) was encapsulated in situ in PTBNWs (denoted as PTBNWs‐HRP) for potential biosensor applications. PTBNWs‐HRP was then modified on a glassy carbon (GC) electrode. In the system obtained, the PTBNWs served as an excellent redox mediator and exhibited high efficiency of electron transfer between the HRP and the GC electrode for the reduction of H2O2. The proposed electrode can be used as an excellent amperometric sensor for H2O2 at ?0.1 V with a linear response range covering from 1 μM to 28 mM, a detection limit of 1 μM (based on S/N=3) and a fast response time of less than 8 s.  相似文献   

2.
《Electroanalysis》2006,18(3):259-266
In this paper, a new strategy for constructing a mediator‐type amperometric hydrogen peroxide (H2O2) microbiosensor was described. An electropolymerized thionine film (PTH) was deposited directly onto a gold electrode surface. The resulting redox film was extremely thin, adhered well onto a substrate (electrode), and had a highly cross‐linked network structure. Consequently, horseradish peroxidase (HRP) was successfully immobilized on nanometer‐sized Au colloids, which were supported by thiol‐tailed groups of 11‐mercaptoundecanoic acid (11‐MUA) monolayer covalently bound onto PTH film. With the aid of the PTH mediator, HRP‐labeled Au colloids microbiosensor displayed excellent electrocatalytical response to the reduction of H2O2. This matrix showed a biocompatible microenvironment for retaining the native activity of the covalent HRP and a very low mass transport barrier to the substrate, which provided a fast amperometric response to H2O2. The proposed H2O2 microbiosensor exhibited linear range of 3.5 μM–0.7 mM with a detection limit of 0.05 μM (S/N=3). The response showed a Michaelis‐Menten behavior at larger H2O2 concentrations. The KMapp value for the biosensors based on 24 nm Au colloids was found to be 47 μM, which demonstrated that HRP immobilized on Au colloids exhibited a high affinity to H2O2 with no loss of enzymatic activity. This microbiosensor possessed good analytical performance and storage stability.  相似文献   

3.
A new convenient strategy to fabricate a third‐generation hydrogen peroxide biosensor was described. The screen‐printed carbon electrode (SPCE) was first modified with a layer of 4‐nitrophenyl assembled from the 4‐nitroaniline diazonium salt synthesized in situ in acidic aqueous solution. Next, the nitro groups were converted to amines followed by crosslinking to the horseradish peroxidase (HRP) by glutaraldehyde. The redox chemistry of the active center of the HRP was observed and the HRP‐modified electrode displayed electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) without any mediators. H2O2 was determined in a linear range from 5.0 μM to 50.0 μM, with a detection limit of 1.0 μM. Furthermore, the biosensor exhibited fast amperometric response, good reproducibility and long‐term stability.  相似文献   

4.
A new composite film of microbial exocellular polysaccharide‐gellan gum (GG) and hydrophilic room temperature ionic liquid 1‐butyl‐3‐methyl‐imidazolium tetrafluoroborate (BMIMBF4) was firstly used as an immobilization matrix to entrap horseradish peroxidase (HRP), and its properties were studied by UV/vis spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The results showed that BMIMBF4 could promote the electron transfer between HRP and electrode surface, and the existence of GG could successfully immobilize BMIMBF4 on the electrode surface with improved stability. HRP–BMIMBF4–GG/GCE exhibited a pair of well‐defined and quasireversible cyclic voltammetric peaks in 0.1 M pH 7.0 phosphate buffer solutions at 1.8 V/s, which was the characteristic of HRP Fe(III)/Fe(II) redox couples. The formal potentials (E°′) was ?0.368 V (vs. SCE) and the peak‐to‐peak potential separation (ΔEP) was 0.058 V. The peak currents were five times as large as those of HRP–GG/GCE. The average surface coverage (Γ*) and the apparent Michaelis‐Menten constant (Km) were 4.5×10?9 mol/cm2 and 0.67 μM, respectively. The electron transfer rate constant was estimated to be 15.8 s?1. The proposed electrode showed excellent electrocatalytic activity towards hydrogen peroxide (H2O2). The linear dynamic range for the detection of H2O2 was 0.05–0.5 μM with a correlation coefficient of 0.9945 and the detection limit was estimated at about 0.02 μM (S/N=3). BMIMBF4–GG composite film was promising to immobilize other redox enzymes or proteins and attain their direct electrochemistry.  相似文献   

5.
Herein, we report the development of a robust, sensitive, and selective non‐enzymatic electrochemical sensor for the detection of hydrogen peroxide (H2O2). The novel BA modified CN‐dot wrapped Cu2O‐nano‐frogspawn (FS@CN‐dot) sensor probe demonstrated a catalytic property towards H2O2 that allowed the highly sensitive electrochemical detection at a low reduction potential. The as prepared CN‐dot wrapped Cu2O hetero‐structured nanocomposite was analyzed using surface analysis methods to confirm the morphology, crystallinity, and oxidation states of various constituents and dopant elements. Further, the morphological analysis of the Cu2O nanoparticles revealed that the Cu2O retains frogspawns‐liked structure. Under the optimized experimental conditions, the sensor showed a wide dynamic range of H2O2 from 0.5 μM to 9 mM with a detection limit (LD) of 1.2±0.1 nM. The designed sensing probe showed good stability, high sensitivity, and selectivity even in the presence of potential interfering molecules. To check the reliability of the fabricated sensor in biomedical applications, the proposed sensing probe was successfully applied to monitor H2O2 in saliva of a gum‐diseased patient. To the best of our knowledge, this report is the first of its kind not only because of its novel construction style in terms of CN source, but also in terms of real sample applicability as well.  相似文献   

6.
At present, a highly sensitive hydrogen peroxide (H2O2) sensor is fabricated by ferrocene based naphthaquinone derivatives as 2,3‐Diferrocenyl‐1,4‐naphthoquinone and 2‐bromo‐3‐ferrocenyl‐1,4‐naphthoquinone. These ferrocene based naphthaquinone derivatives are characterized by H‐NMR and C‐NMR. The electrochemical properties of these ferrocene based naphthaquinone are investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) on modified glassy carbon electrode (GCE). The modified electrode with ferrocene based naphthaquinone derivatives exhibits an improved voltammetric response to the H2O2 redox reaction. 2‐bromo‐3‐ferrocenyl‐1,4‐naphthoquinone show excellent non‐enzymatic sensing ability towards H2O2 response with a detection limitation of 2.7 μmol/L a wide detection range from 10 μM to 400 μM in H2O2 detection. The sensor also exhibits short response time (1 s) and good sensitivity of 71.4 μA mM?1 cm?2 and stability. Furthermore, the DPV method exhibited very high sensitivity (18999 μA mM?1 cm?2) and low detection limit (0.66 μM) compared to the CA method. Ferrocene based naphthaquinone derivative based sensors have a lower cost and high stability. Thus, this novel non‐enzyme sensor has potential application in H2O2 detection.  相似文献   

7.
A novel protocol for immobilization of horseradish peroxidase (HRP) onto diazonium functionalized screen‐printed gold electrode (SPGE) has been successfully developed. This protocol involved 1) electrochemical reduction of p‐nitrophenyl diazonium salts synthesized in situ in acidic aqueous solution to graft a layer of p‐nitrophenyl on SPGE, 2) electrochemical reduction of the nitro groups to convert to amines, 3) chemical reaction with nitrous acid to transform the amine to diazonium derivative and 4) chemical coupling of the enzyme with the diazonium group to form a covalent diazo bond. The fabricated biosensor showed the direct electrochemistry of HRP and displayed electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) without any mediator. The biosensor exhibited fast amperometric response to H2O2. The catalytic current increased with increasing H2O2 concentration from 5 μM to 30 μM and the detection limit of the biosensor was 2 μM. The biosensor exhibited acceptable sensitivity, good reproducibility and long‐term stability.  相似文献   

8.
In this work, we reported the development of a nickel metal-organic framework nanosheet array on Ti-mesh (Ni-MOF/TM) as an enzyme-free electrochemical sensing platform for H2O2 determination. The as-obtained sensor exhibited outstanding detection properties of H2O2, which might be gifted from the large specific surface area, abundant active sites of Ni-MOF nanoarrays. The sensor displayed a good linear range (0.8 μM–4.6×103 μM), a detection limit as low as 0.26 μM, a high sensitivity (307.5 μA mM−1 cm−2), and a rapid response. Moreover, this enzyme-free sensor is promising for point-of-care (POC) testing of H2O2 in human serum attribute to the excellent performance of Ni-MOF and the simple preparation process of the sensor.  相似文献   

9.
《Electroanalysis》2004,16(9):730-735
Electrooxidation of thionine on screen‐printed carbon electrode gives rise to the modification of the surface with amino groups for the covalent immobilization of enzymes such as horseradish peroxidase (HRP). The biosensor was constructed using multilayer enzymes which covalently immobilized onto the surface of amino groups modified screen‐printed carbon electrode using glutaraldehyde as a bifunctional reagent. The multilayer assemble of HRP has been characterized with the cyclic voltammetry and the faradaic impedance spectroscopy. The H2O2 biosensor exhibited a fast response (2 s) and low detection limit (0.5 μM).  相似文献   

10.
《Electroanalysis》2004,16(9):736-740
A new enzyme‐based amperometric biosensor for hydrogen peroxide was developed relying on the efficient immobilization of horseradish peroxidase (HRP) to a nano‐scaled particulate gold (nano‐Au) film modified glassy carbon electrode (GC). The nano‐Au film was obtained by a chitosan film which was first formed on the surface of GC. The high affinity of chitosan for nano‐Au associated with its amino groups resulted in the formation of nano‐Au film on the surface of GC. The film formed served as an intermediator to retain high efficient and stable immobilization of the enzyme. H2O2 was detected using hydroquinone as an electron mediator to transfer electrons between the electrode and HRP. The HRP immobilized on nano‐Au film maintained excellent electrocatalytical activity to the reduction of H2O2. The experimental parameters such as the operating potential of the working electrode, mediator concentration and pH of background electrolyte were optimized for best analytical performance of amperometry. The linear range of detection for H2O2 is from 6.1×10?6 to 1.8×10?3 mol L?1 with a detection limit of 6.1 μmol L?1 based on signal/noise=3. The proposed HRP enzyme sensor has the features of high sensitivity (0.25 Almol?1cm?2), fast response time (t90%≤10 s) and a long‐term stability (>1 month). As an extension, glucose oxidase (GOD) was chemically bound to HRP‐modified electrode. A GOD/HRP bienzyme‐modified electrode formed in this way can be applied to the determination of glucose with satisfactory performance.  相似文献   

11.
Herein, we describe a new method for the detection of hydrogen peroxide (H2O2) in food by using an electrochemical biosensor. Initially, ultrafine gold nanoparticles dispersed on graphene oxide (AuNP‐GO) were synthesized by the redox reaction between AuCl4? and GO, and thionine‐catalase conjugates were then assembled onto the AuNP‐GO surface on a glassy carbon electrode. With the aid of the AuNP‐GO, the as‐prepared biosensor exhibited good electrocatalytic efficiency toward the reduction of H2O2 in pH 5.8 acetic acid buffer. Under optimal conditions, the dynamic responses of the biosensor toward H2O2 were achieved in the range from 0.1 µM to 2.3 mM, and the detection limit (LOD) was 0.01 µM at 3sB. The Michaelis–Menten constant was measured to be 0.98 mM. In addition, the repeatability, reproducibility, selectivity and stability of the biosensor were investigated and evaluated in detail. Finally, the method was applied for sensing H2O2 in spiked or naturally contaminated samples including sterilized milk, apple juices, watermelon juice, coconut milk, and mango juice, receiving good correspondence with the results from the permanganate titration method. The disposable biosensor could offer a great potential for rapid, cost‐effective and on‐field analysis of H2O2 in foodstuff.  相似文献   

12.
A new biosensor for the amperometric detection of hydrogen peroxide was developed based on the co-immobilization of horseradish peroxidase (HRP) and methylene blue on a β-type zeolite modified glassy carbon electrode without the commonly used bovine serum albumin-glutaraldehyde. The intermolecular interaction between enzyme and zeolite matrix was investigated using FT-IR. The cyclic voltammetry and amperometric measurement demonstrated that methylene blue co-immobilized with HRP in this way displayed good stability and could efficiently transfer electrons between immobilized HRP and the electrode. The sensor responded rapidly to H2O2 in the linear range from 2.5 × 10–6 to 4.0 × 10–3 M with a detection limit of 0.3 μM. The sensor was stable in continuous operation.  相似文献   

13.
Live‐imaging of signaling molecules released from living cells is a fundamental challenge in life sciences. Herein, we synthesized liquid crystal elastomer microspheres functionalized with horse‐radish peroxidase (LCEM‐HRP), which can be immobilized directly on the cell membrane to monitor real‐time release of H2O2 at the single‐cell level. LCEM‐HRP could report H2O2 through a concentric‐to‐radial (C‐R) transfiguration, which is due to the deprotonation of LCEM‐HRP and the break of inter or intra‐chain hydrogen bonding in LCEM‐HRP caused by HRP‐catalyzed reduction of H2O2. The level of transfiguration of LCEM‐HRP revealed the different amounts of H2O2 released from cells. The estimated detection sensitivity was ≈2.2×10?7 μm for 10 min of detection time. The cell lines and cell–cell heterogeneity was explored from different configurations. LCEM‐HRP presents a new approach for in situ real‐time imaging of H2O2 release from living cells and can be the basis for seeking more advanced chemical probes for imaging of various signaling molecules in the cellular microenvironment.  相似文献   

14.
The nanocomposites of Ag nanoparticles supported on Cu2O were prepared and used for fabricating a novel nonenzymatic H2O2 sensor. The morphology and composition of the nanocomposites were characterized using the scanning electron microscope (SEM), transmission electron microscope (TEM), energy‐dispersive X‐ray spectrum (EDX) and X‐ray diffraction spectrum (XRD). The electrochemical investigations indicate that the sensor possesses an excellent performance toward H2O2. The linear range is estimated to be from 2.0 μM to 13.0 mM with a sensitivity of 88.9 μA mM?1 cm?2, a response time of 3 s and a low detection limit of 0.7 μM at a signal‐to‐noise ratio of 3. Additionally, the sensor exhibits good anti‐interference.  相似文献   

15.
The present study describes a novel and very sensitive electrochemical assay for determination of hydrogen peroxide (H2O2) based on synergistic effects of reduced graphene oxide‐ magnetic iron oxide nanocomposite (rGO‐Fe3O4) and celestine blue (CB) for electrochemical reduction of H2O2. rGO‐Fe3O4 nanocomposite was synthesized and characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X‐ray diffraction (XRD), electrochemical impedance spectroscopy and cyclic voltammetry. Chitosan (Chit) was used for immobilization of amino‐terminated single‐stranded DNA (ss‐DNA) molecules via a glutaraldehyde (GA) to the surface of rGO‐Fe3O4. The MTT (3‐(4,5‐Dim ethylt hiazol‐2‐yl)‐2,5‐diphenylt etrazolium bromide) results confirmed the biocompatibility of nanocomposite. Experimental parameters affecting the ss‐DNA molecules immobilization were optimized. Finally, by accumulation of the CB on the surface of the rGO‐Fe3O4‐Chit/ssDNA, very sensitive amperometric H2O2 sensor was fabricated. The electrocatalytic activity of the rGO‐Fe3O4‐Chit/DNA‐CB electrode toward H2O2 reduction was found to be very efficient, yielding very low detection limit (DL) of 42 nM and a sensitivity of 8.51 μA/μM. Result shows that complex matrices of the human serum samples did not interfere with the fabricated sensor. The developed sensor provided significant advantages in terms of low detection limit, high stability and good reproducibility for detection of H2O2 in comparison with recently reported electrochemical H2O2 sensors.  相似文献   

16.
Ag/MnO2/GO nanocomposites were synthesized via the method of gas/liquid interface based on silver mirror reaction, and a non‐enzymatic H2O2 sensor was fabricated through immobilizing Ag/MnO2/GO nanocomposites on GCE. The composition and morphology of the nanocomposites were studied by energy‐dispersive X‐ray spectroscopy (EDS), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Electrochemical investigation indicated that it exhibited a favorable performance for the H2O2 detection. Its linear detection range was from 3 μM to 7 mM with a correlation coefficient of 0.9960; the sensitivity was 105.40 μA mM?1 cm?2 and the detection limit was estimated to be 0.7 μM at a signal‐to‐noise ratio of 3.  相似文献   

17.
There are great challenges to fabricate a highly selective and sensitive enzyme‐free biomimetic sensor. Herein for the first time a unique nanostructure of porous molybdenum carbide impregnated in N‐doped carbon (p‐Mo2C/NC) is synthesized by using SiO2 nanocrystals‐templating method and is further used as an enzyme‐free electrochemical biosensor toward highly selective, sensitive detection of H2O2, of which the limit of detection, dynamic detection range and sensitivity accomplish as 0.22 μM, 0.05–4.5 mM and 577.14 μA mM?1 cm?2, respectively, and are much superior to the non‐porous molybdenum carbide impregnated in N‐doped carbon (Mo2C/NC). The sensor is also used to monitor H2O2 released from A549 living cells. This work holds a great promise to be used to monitor the presence of H2O2 in biological research while offering an important knowledge to design a highly selective and sensitive biomimetic sensor by synthesizing a porous catalyst to greatly improve the reaction surface area rather than conventionally only relying on dispersing the catalyst material into porous carbon substrate.  相似文献   

18.
《Electroanalysis》2017,29(6):1626-1634
A Pt nanoparticle modified Pencil Graphite Electrode (PGE) was proposed for the electrocatalytic oxidation and non‐enzymatic determination of H2O2 in Flow Injection Analysis (FIA) system. Platinum nanoparticles (PtNPs) electrochemically deposited on pretreated PGE (p.PGE) surface by recording cyclic voltammograms of 1.0 mM of H2PtCl6 solution in 0.10 M KCl at scan rate of 50 mV s−1 for 30 cycles. Cyclic voltammograms show that the oxidation peak potential of H2O2 shifts from about +700 mV at bare PGE to +50 mV at PtNPs/p.PGE vs. Ag/AgCl /KCl (sat.). It can be concluded that PtNPs/p.PGE exhibits a good electrocatalytic activity towards oxidation of H2O2. Then, FI amperometric analysis of H2O2 was performed under optimized conditions using a new homemade electrochemical flow cell which was constructed for PGE. Linear range was found as 2.5 μM to 750.0 μM H2O2 with a detection limit of 0.73 μM (based on Sb/m of 3). As a result, this study shows the first study on the FI amperometric determination of H2O2 at PtNPs/p.PGE which exhibits a simple, low cost, commercially available, disposable sensor for H2O2 detection. The proposed electrode was successfully applied to determination of H2O2 in real sample.  相似文献   

19.
A novel horseradish peroxidase (HRP) electrochemical biosensor based on a MgO nanoparticles (nano‐MgO)‐chitosan (chit) composite matrix was developed. The morphology of nano‐MgO‐chit nanocomposite was examined by scanning electron microscopy (SEM). The interaction between nano‐MgO‐chit nanocomposite matrix and enzyme was characterized with UV‐vis spectra. This proposed composite material combined the advantages of inorganic nanoparticles and organic polymer chit. The HRP immobilized in the nanocomposite matrix displayed excellent electrocatalytic activity to the reduction of H2O2 in the presence of hydroquinone as a mediator. The effects of the experimental variables such as solution pH and the working potential were investigated using steady‐state amperometry. The present biosensor (HRP‐modified electrode) had a fast response towards H2O2 (less than 10 s), and excellent linear relationships were obtained in the concentration range of 0.1–1300 μM, with a detection limit of 0.05 μM (S/N=3). Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

20.
A simple and practical sensor of hydrogen peroxide (H2O2) was designed successfully. The mixture of horseradish peroxidase (HRP) and chitosan (Chit) are effectively immobilized on the surface of poly-L-leucine/polydopamine modified glassy carbon electrode (PL-LEU/PDA/GCE). Under the optimum conditions, the biosensor based on HRP exhibits a fast amperometric response (within 3 s) to H2O2. The linear response range of the sensor is 0.5–952.0 μmol L–1, with the detection limit of 0.1 μmol L–1 (S/N = 3) and the sensitivity of 0.23 A L moL–1 cm–2. The apparent Michaelis–Menten constant (k M app) of the biosensor is evaluated to be 0.12 mmol L–1, which suggests that the HRP-Chit/PL-LEU/PDA/GCE shows a higher affinity for H2O2. The sensor exhibits good sensitivity, selectivity, stability and reproducibility. The proposed method has been successfully applied to the determination of H2O2 in practical samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号