首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Through chemical functionalization of single‐walled carbon nanotubes, the prerequisites for possible applications of such nanostructures are established. The derivatized tubes differ from the crude materials in their good solubility, which enables both a more extensive characterization and subsequent chemical reactivity. Current derivatization methods include defect and covalent sidewall functionalization, as well as noncovalent exo‐ and endohedral functionalization. In this way, for example, a range of nanotubes can be prepared: with sidewall substituents, wrapped with polymers, or with guest molecules included. The current state of the literature is presented in this Minireview.  相似文献   

3.
4.
The synthesis of functionalised carbon nanotubes as receptors for riboflavin (RBF) is reported. Carbon nanotubes, both single‐walled and multi‐walled, have been functionalised with 1,3,5‐triazines and p‐tolyl chains by aryl radical addition under microwave irradiation and the derivatives have been fully characterised by using a range of techniques. The interactions between riboflavin and the hybrids were analysed by using fluorescence and UV/Vis spectroscopic techniques. The results show that the attached functional groups minimise the π‐π stacking interactions between riboflavin and the nanotube walls. Comparison of p‐tolyl groups with the triazine groups shows that the latter have stronger interactions with riboflavin because of the presence of hydrogen bonds. Moreover, the triazine derivatives follow the Stern–Volmer relationship and show a high association constant with riboflavin. In this way, artificial receptors in catalytic processes could be designed through specific control of the interaction between functionalised carbon nanotubes and riboflavin.  相似文献   

5.
This report describes the photochemical behavior of single‐walled carbon nanotubes (SWNTs) in the presence of propylamine. The SWNTs are characterized by absorption and Raman spectroscopy. The spectral changes due to photoirradiation indicate that reactions occur predominantly with the metallic SWNTs and small‐diameter SWNTs. The detection of amine radicalcation species by ESR spectroscopy reveals photoinduced electron transfer from the amine to the excited SWNTs. After exposure of the photoirradiated SWNTs to air, the characteristic spectra were recovered, except for that of the small‐diameter SWNTs. The results suggest that, after photoreduction of the SWNTs, subsequent selective sidewall functionalization of the small‐diameter SWNTs occurs.  相似文献   

6.
We report on the characterization of a novel hetero‐selective DNA‐like duplex of pyrene and anthraquinone pseudo base pairs. The pyrene/anthraquinone pairs showed excellent selectivity in hetero‐recognition and even trimers were found to form a hetero‐duplex. Pyrene and anthraquinone moieties were tethered on acyclic D ‐threoninol linkers and linked to adjacent residues by using standard phosphoramidite chemistry. When pyrene and anthraquinone were incorporated at pairing positions in complementary strands of natural DNA oligonucleotides, the duplex was stabilized significantly. Moreover, a pyrene hexamer and an anthraquinone hexamer formed a stable artificial hetero‐duplex without the assistance of natural base pairs. The pyrene/anthraquinone pair was so stable that even trimers formed a hetero‐duplex under conditions in which natural DNA strands of three residues do not.  相似文献   

7.
8.
Developing a novel, small‐sized molecular building block that may be capable of emitting light in the solid state is a challenging task and has rarely been reported in the literature. BF2‐containing dyes seem to be promising candidates towards this aim. Two series of new N^NBF2 complexes showing aggregation‐induced emission (AIE) and aggregation‐induced emission enhancement (AIEE) were designed and synthesized by means of a new protocol, which improved on the traditional method by employing microwave irradiation. The optical and photophysical properties of the BF2 complexes were investigated in depth. The synthesized complexes showed fluorescence in both solution and the solid state and, in a mixture of tetrahydrofuran/water, may aggregate into fluorescent nanoparticles. The experimental investigation was supported by quantum mechanical calculations. Their availability, stability, large Stokes shifts, and aggregation capabilities, along with their solid‐state emission capability, render this new class of BF2 complexes promising AIEE/AIE fluorophores for further applications in the fields of fluorescence imaging and materials science.  相似文献   

9.
Two novel synthetic strategies to covalently link a metallocene electron‐donor unit to a chlorin ring are presented. In one approach, pyropheophorbide a is readily converted into its 131‐ferrocenyl dehydro derivative by nucleophilic addition of the ferrocenyl anion to the 131‐carbonyl group. In another approach, the corresponding 131‐pentamethylruthenocenyl derivative is synthesised from 131‐fulvenylchlorin by a facile ligand exchange/deprotonation reaction with the [RuCp*(cod)Cl] (Cp*=pentamethylcyclopentadienyl; cod=1,5‐cyclooctadiene) complex. The resulting metallocene–chlorins exhibit reduced aromaticity, which was unequivocally supported by ring‐current calculations based on the gauge‐including magnetically induced current (GIMIC) method and by calculated nucleus‐independent chemical shift (NICS) values. The negative ring current in the isocyclic E ring suggests the antiaromatic character of this moiety and also clarifies the spontaneous reactivity of the complexes with oxygen. The oxidation products were isolated and their electrochemical and photophysical properties were studied. The ruthenocene derivatives turned out to be stable under light irradiation and showed photoinduced charge transfer with charge‐separation lifetimes of 152–1029 ps.  相似文献   

10.
A small series of donor–acceptor molecular dyads has been synthesized and fully characterized. In each case, the acceptor is a dicyanovinyl unit and the donor is a boron dipyrromethene (BODIPY) dye equipped with a single styryl arm bearing a terminal amino group. In the absence of the acceptor, the BODIPY‐based dyes are strongly fluorescent in the far‐red region and the relaxed excited‐singlet states possess significant charge‐transfer character. As such, the emission maxima depend on both the solvent polarity and temperature. With the corresponding push–pull molecules, there is a low‐energy charge‐transfer state that can be observed by both absorption and emission spectroscopy. Here, charge‐recombination fluorescence is weak and decays over a few hundred picoseconds or so to recover the ground state. Overall, these results permit evaluation of the factors affecting the probability of charge‐recombination fluorescence in push–pull dyes. The photophysical studies are supported by cyclic voltammetry and DFT calculations.  相似文献   

11.
Single‐walled carbon nanotubes (SWNTs)/polyaniline (PANI) composite films with enhanced thermoelectric properties were prepared by combining in situ polymerization and solution processing. Conductive atomic force microscopy and X‐ray diffraction measurements confirmed that solution processing and strong π–π interactions between the PANI and SWNTs induced the PANI molecules to form a highly ordered structure. The improved degree of order of the PANI molecular arrangement increased the carrier mobility and thereby enhanced the electrical transport properties of PANI. The maximum in‐plane electrical conductivity and power factor of the SWNTs/PANI composite films reached 1.44×103 S cm?1 and 217 μW m?1 K?2, respectively, at room temperature. Furthermore, a thermoelectric generator fabricated with the SWNTs/PANI composite films showed good electric generation ability and stability. A high power density of 10.4 μW cm?2 K?1 was obtained, which is superior to most reported results obtained in organic thermoelectric modules.  相似文献   

12.
Genomic DNA in bacteria exists in a condensed state, which exhibits different biochemical and biophysical properties from a dilute solution. DNA was concentrated on streptavidin‐covered single‐walled carbon nanotubes (Strep ? SWNTs) through biotin–streptavidin interactions. We reasoned that confining DNA within a defined space through mechanical constraints, rather than by manipulating buffer conditions, would more closely resemble physiological conditions. By ensuring a high streptavidin loading on SWNTs of about 1 streptavidin tetramer per 4 nm of SWNT, we were able to achieve dense DNA binding. DNA is bound to Strep ? SWNTs at a tunable density and up to as high as 0.5 mg mL?1 in solution and 29 mg mL?1 on a 2D surface. This platform allows us to observe the aggregation behavior of DNA at high concentrations and the counteracting effects of HU protein (a histone‐like protein from Escherichia coli strain U93) on the DNA aggregates. This provides an in vitro model for studying DNA–DNA and DNA–protein interactions at a high DNA concentration.  相似文献   

13.
14.
2‐Azaxanthone, a nitrogenated derivative of the well‐studied organic chromophore xanthone, has been covalently bound through 2‐(ethylthio)ethylamido linkers to the carboxylic acid groups of short, soluble single‐walled carbon nanotubes (CNTs) of 450 nm average length, and the resulting azaxanthylium‐functionalized CNTs (AZX‐CNT, 8.5 wt % AZX content) characterized by solution 1H NMR, Raman and IR spectroscopy and thermogravimetric analysis. Comparison of the quenching of the triplet excited state of AZX (steady‐state and time‐resolved) and of the transient optical spectra of CNTs and AZX‐CNT shows that the covalent linkage boosts the interaction between the azaxanthylium moiety and the short CNT units. The triplet excited state of the azaxanthylium derivative is quenched by CNT with and without covalent bonding, but when it is covalently bonded, the singular transient spectrum is compatible with the photogeneration of electron holes through electron transfer from CNT to excited azaxanthylium units.  相似文献   

15.
Cup‐shaped nanocarbons (CNC) generated by the electron‐transfer reduction of cup‐stacked carbon nanotubes have been functionalized with porphyrins (H2P) as light‐capturing chromophores. The resulting donor–acceptor nanohybrid has been characterized by thermogravimetric analysis (TGA), Raman and IR spectroscopy, transmission electron microscopy, elemental analysis, and UV/Vis spectroscopy. The weight of the porphyrins attached to the cup‐shaped nanocarbons was determined as 20 % by TGA and elemental analysis. The UV/Vis absorption spectrum of CNC? (H2P)n in DMF agrees well with that obtained by the superposition of reference porphyrin (ref‐H2P) and cup‐shaped nanocarbons. The photoexcitation of the CNC? (H2P)n nanohybrid results in formation of the charge‐separated (CS) state to attain the longest CS lifetime (0.64±0.01 ms) ever reported for donor–acceptor nanohybrids, which may arise from efficient electron migration following the charge separation. The formation of a radical ion pair was detected directly by electron spin resonance (ESR) measurements under photoirradiation of CNC? (H2P)n with a high‐pressure mercury lamp in frozen DMF at 153 K. The observed ESR signal at g=2.0044 agrees with that of ref‐H2P.+ produced by one‐electron oxidation with [Ru(bpy)3]3+ in deaerated CHCl3, indicating the formation of H2P.+. The electron‐acceptor ability of the reference CNC compound (ref‐CNC) was also examined by the electron‐transfer reduction of ref‐CNC by a series of semiquinone radical anions.  相似文献   

16.
17.
Hybridizations of redox‐active polyoxometalates (POMs) with single‐walled carbon nanotubes (SWNTs) have been widely investigated for their diverse applications. For the purpose of constructing high‐quality electronic devices, controlling charge transfer within POM/SWNT hybrids is an inevitable issue. As determined by means of fluorescence spectroscopy, electron transfer between SWNTs and a common POM dopant, phosphomolybdic acid (PMo12), can be tuned simply by an alteration of nanotube surfactant type from anionic to nonionic. The mechanism is attributed to the influence of surfactant type on the stabilization of the electron donor–acceptor hybrid and effect of surfactant–nanotube interactions. These results will be important to control charge‐transport behavior in nanohybrids consisting of carbon nanotubes.  相似文献   

18.
19.
20.
A novel approach to solubilize single‐walled carbon nanotubes (SWCNTs) in the aqueous phase is described by employing supramolecular surface modification. We use cyclodextrin complexes of synthetic molecules that contain a planar pyrene moiety or a bent, shape‐fitted triptycene moiety as a binding group connected through a spacer to an adamantane moiety that is accommodated in the cyclodextrin cavity. The binding groups attach to the sidewalls of SWCNTs through a π–π stacking interaction to yield a supramolecular system that allows the SWCNTs to dissolve in the aqueous phase through the formed hydrophilic cyclodextrin shell. The black aqueous SWCNT solutions obtained are stable over a period of months. They are characterized through absorbance, static, and time‐resolved fluorescence spectroscopy as well as Raman spectroscopy, TEM, and fluorescence‐decay measurements. Furthermore, the shape‐fitted triptycene‐based system shows a pronounced selectivity for SWCNTs with a diameter of 1.0 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号