首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical study of Sechium mexicanum roots led to the isolation of the two new saponins {3‐O‐β‐D ‐glucopyranosyl (1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,16α,23‐tetrahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (1) and {3‐O‐β‐D ‐glucopyranosyl (1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,16α,23‐tetrahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐[β‐D ‐apiosyl‐(1 → 3)]‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (2), together with the known compounds {3‐O‐β‐D ‐glucopyranosyl‐(1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,6β,16α,23‐pentahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (3), tacacosides A1 (4) and B3 (5). The structures of saponins 1 and 2 were elucidated using a combination of 1H and 13C 1D‐NMR, COSY, TOCSY, gHMBC and gHSQC 2D‐NMR, and FABMS of the natural compounds and their peracetylated derivates, as well as by chemical degradation. Compounds 1–3 are the first examples of saponins containing polygalacic and 16‐hydroxyprotobasic acids found in the genus Sechium, while 4 and 5, which had been characterized partially by NMR, are now characterized in detail. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Three new oleanane‐type triterpenoid saponins, 3‐O‐(α‐L ‐rhamnopyranosyl(1→2)‐β‐D ‐fucopyranosyl)‐28‐O‐{[α‐L ‐rhamnopyranosyl(1→2)] [β‐D ‐fucopyranosyl(1→6)]‐β‐D ‐glucopyranosyl} oleanolic acid ( 1 ), 3‐O‐[α‐L ‐rhamnopyranosyl(1→3)‐β‐D ‐fucopyranosyl]‐28‐O‐[α‐L ‐rhamnopyranosyl(1→4)‐β‐D ‐glucopyranosyl] oleanolic acid ( 2 ), and 3‐O‐{α‐L ‐rhamnopyranosyl(1→2)‐[3′,4′‐diacetoxy‐β‐D ‐fucopyranosyl]}‐28‐O‐[α‐L ‐rhamnopyranosyl(1→2)‐β‐D ‐glucopyranosyl] oleanolic acid ( 3 ) have been isolated from the stems of Xerospermum noronhianum. The structures of the saponins were determined as a series of bidesmosidic oleanane saponins based on spectral evidence. The anticholinesterase activity of the saponins 1 – 3 was also evaluated.  相似文献   

3.
Three new triterpenoid saponins, ardisicrenoside I ( 1 ), ardisicrenoside J ( 2 ), and ardisicrenoside M ( 3 ), along with eight known compounds, were isolated from the roots of Ardisia crenata Sims . Their structures were elucidated as 16α‐hydroxy‐30,30‐dimethoxy‐3βO‐{β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 1 ), 16α‐hydroxy‐30,30‐dimethoxy‐3βO‐{α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 2 ), 30,30‐dimethoxy‐16‐oxo‐3βO‐{β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 3 ), ardisiacrispin A ( 4 ), ardisiacrispin B ( 5 ), ardisicrenoside B ( 6 ), ardisicrenoside A ( 7 ), ardisicrenoside H ( 8 ), ardisicrenoside G ( 9 ), cyclamiretin A‐3βOβ‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐arabinopyranoside ( 10 ), and cyclamiretin A‐3βOα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐arabinopyranoside ( 11 ) by means of chemical and spectral analysis, and their cytotoxicities were evaluated in vitro.  相似文献   

4.
In the search for the cause for the formation of persistent foam in the Rhine River below the Rhine Fall at Schaffhausen, an investigation of the tensioactive principles from the aquatic plant Ranunculus fluitans L. (Ranunculaceae) was carried out. Two new (see 1 and 2 ) and four known bisdesmosidic triterpene saponins (see 4 – 6 ) were isolated along with the two known diacylglycerol galactosides 7 and 8 . The saponin structures were established by the identification of the aglycon and sugar moieties by HPLC and chiral capillary zone electrophoresis (CZE), ion‐spray LC/MS and extensive 1‐ and 2D homo‐ and heteronuclear NMR spectroscopy. The structures of the new oleanane‐type saponins were identified as 3‐O‐[β‐D ‐glucopyranosyl‐(1→3)‐α‐L ‐arabinopyranosyl]‐28‐O‐[α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl]hederagenin ( 1 ) and 3‐O‐[β‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl]oleanolic acid [α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl] ester ( 2 ). LC/MS Studies of tensioactive fractions revealed the presence of additional glycoglycerolipids.  相似文献   

5.
Four new saponins, yemuosides YM17–YM20 ( 1 – 4 , resp.), were isolated from the rattan of Stauntonia chinensis DC. (Lardizabalaceae) along with a known saponin, nipponoside D ( 5 ). Their structures were elucidated by spectroscopic analysis and chemical evidence as 20,30‐dihydroxy‐29‐noroleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 1 ), 20,29‐dihydroxy‐30‐noroleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 2 ), 29‐hydroxy‐30‐norolean‐20(21)‐enolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 3 ), 29‐hydroxyoleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 4 ), and 23,29‐dihydroxyoleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 5 ). Yemuoside YM17–YM19 ( 1 – 3 , resp.) contain novel unusual nortriterpene aglycones.  相似文献   

6.
Two new oleanane‐type triterpene saponins, afrocyclamins A and B ( 1 and 2 , resp.), were isolated from a MeOH extract of the roots of Cyclamen africanum Boiss . & Reuter , together with three known triterpenoid saponins, lysikokianoside, deglucocyclamin I, and its dicrotalic acid derivative. The structures were elucidated, on the basis of 1D‐ and 2D‐NMR experiments and mass spectrometry as (3β,20β)‐13,28‐epoxy‐16‐oxo‐3‐{Oβ‐D ‐xylopyranosyl‐(1→2)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}oxy}oleanan‐29‐al ( 1 ) and (3β,16α,20β)‐16,28,29‐trihydroxy‐olean‐12‐en‐3‐yl O‐4‐O‐(4‐carboxy‐3‐hydroxy‐3‐methyl‐1‐oxobutyl)‐β‐D ‐xylopyranosyl‐(1→2)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranoside ( 2 ).  相似文献   

7.
Five new triterpene saponins 1 – 5 were isolated from the roots of Muraltia ononidifolia E. Mey along with the two known saponins 3‐O‐[Oβ‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl]medicagenic acid 28‐[Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl] ester and 3‐O‐(β‐D ‐glucopyranosyl)medicagenic acid 28‐[Oα‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl] ester (medicagenic acid=(4α,2β,3β)‐2,3‐dihydroxyolean‐12‐ene‐23,28‐dioic acid). Their structures were elucidated mainly by spectroscopic experiments, including 2D‐NMR techniques, as 3‐O‐(β‐D ‐glucopyranosyl)medicagenic acid 28‐[Oβ‐ D ‐apiofuranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl] ester ( 1 ), 3‐O‐(β‐D ‐glucopyranosyl)medicagenic acid 28‐{[Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[β‐D ‐apiofuranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl} ester ( 2 ), 3‐O‐[Oβ‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl]medicagenic acid 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[β‐D ‐apiofuranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl} ester ( 3 ), 3‐O‐[Oβ‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl]medicagenic acid 28‐[Oα‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl] ester ( 4 ), and 3‐O‐[Oβ‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl]medicagenic acid ( 5 ).  相似文献   

8.
Three new compounds, myrsinoside A (=2,4‐dihydroxy‐6‐methylphenyl β‐D ‐(6′‐galloyl)glucopyranoside; 1 ), myrsinoside B (2,4‐dihydroxy‐6‐methylphenyl β‐D ‐glucopyranoside; 2 ), and (3β,16α,20α)‐3,16,28‐trihydroxyolean‐12‐en‐29‐oic acid 3‐{Oβ‐D ‐glucopyranosyl‐(1→2)‐O‐[β‐D ‐glucopyranosyl‐(1→4)]‐α‐L ‐arabinopyranoside} ( 3 ), along with four known compounds, were isolated from the stems of Myrsine africana L. The structures of these new compounds were elucidated on the basis of spectroscopic analysis, including 1D‐ and 2D‐NMR and ESI‐MS techniques, and chemical methods.  相似文献   

9.
Three new dammarane‐type triterpene saponins, 1 – 3 , together with three known compounds, 4 – 6 , were isolated from the aerial parts of Gynostemma pentaphyllum (Thunb.) Makino . By means of chemical and spectroscopic methods, their structures were established as (20S)‐3β,20,21‐trihydroxydammara‐23,25‐diene 3‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)] [β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucopyranosyl‐21‐Oβ‐D ‐glucopyranoside ( 1 ), (20R,23R)‐3β,20‐dihydroxy‐19‐oxodammar‐24‐en‐21‐oic acid 21,23‐lactone 3‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)] [β‐D ‐xylopyranosyl‐(1→3)]‐α‐L ‐arabinopyranoside ( 2 ), and (21S,23S)‐3β,20ξ,21,26‐tetrahydroxy‐19‐oxo‐21,23‐epoxydammar‐24‐ene 3‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)] [β‐D ‐xylopyranosyl‐(1→3)]‐α‐L ‐arabinopyranoside ( 3 ).  相似文献   

10.
Two new bisdesmosidic triterpenoid saponins, i.e. 1 and 2 , were isolated, besides the three known saponins 3 – 5 , from the MeOH extract of the aerial parts of Achyranthes aspera Linn. (Amaranthaceae). Their structures were elucidated as β‐D ‐glucopyranosyl 3β‐[Oα‐L ‐rhamnopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranuronosyloxy]machaerinate ( 1 ) and β‐D ‐glucopyranosyl 3β‐[Oβ‐D ‐galactopyranosyl‐(1→2)‐Oα‐D ‐glucopyranuronosyloxy]machaerinate ( 2 ) by NMR spectroscopy, including 2D‐NMR experiments (machaerinic acid=3β,21β‐dihydroxyolean‐12‐en‐28‐oic acid). The other saponins were identified as β‐D ‐glucopyranosyl 3β[Oα‐L ‐rhamnopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranuronosyloxy]oleanolate ( 3 ), β‐D ‐glucopyranosyl 3‐β‐[Oβ‐D ‐galactopyranosyl‐(1→2)‐Oβ‐D ‐glucopyranuronosyloxy]oleanolate ( 4 ), and β‐D ‐glucopyranosyl 3β‐[Oβ‐D ‐glucopyranuronosyloxy]oleanolate ( 5 ) (oleanolic acid=3β‐hydroxyolean‐12‐en‐28‐oic acid).  相似文献   

11.
Eight new acylated preatroxigenin saponins 1 – 8 were isolated as four inseparable mixtures of the trans‐ and cis‐4‐methoxycinnamoyl derivatives, atroximasaponins A1/A2 ( 1 / 2 ), B1/B2 ( 3 / 4 ), C1/C2 ( 5 / 6 ) and D1/D2 ( 7 / 8 ) from the roots of Atroxima congolana. These compounds are the first examples of triterpene saponins containing preatroxigenin (=(2β,3β,4α,22β)‐2,3,22,27‐tetrahydroxyolean‐12‐ene‐23,28‐dioic acid as aglycone. Their structures were elucidated on the basis of extensive 1D‐ and 2D‐NMR studies and FAB‐MS as 3‐O(β‐D ‐glucopyranosyl)preatroxigenin 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[Oβ‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐(trans‐4‐methoxycinnamoyl)‐β‐D ‐fucopyranoyl} ester ( 1 ) and its cis‐isomer 2 , 3‐O‐(β‐D ‐glucopyranosyl)preatroxigenin 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→ 2)‐O‐[O‐6‐O‐acetyl‐β‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐(trans‐ 4‐methoxycinnamoyl)‐β‐D ‐fucopyranosyl} ester ( 3 ) and its cis‐isomer 4 , 3‐O‐(β‐D ‐glucopyranosyl)preatroxigenin 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[β‐D ‐apiofuranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[O‐6‐ O‐acetyl‐β‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐(trans‐4‐methoxycinnamoyl)‐β‐D ‐fucopyranoyl} ester ( 5 ) and its cis‐isomer 6 , 3‐O‐(β‐D ‐glucopyranosyl)preatroxigenin 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[β‐D ‐apiofuranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[Oβ‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐(trans‐4‐methoxycinnamoyl)‐β‐D ‐fucopyranosyl ester ( 7 ) and its cis‐isomer 8 .  相似文献   

12.
Two new saponins, 3‐O‐[β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐galactopyranosyl‐(1→3)‐β‐glucuronopyranosyl]oleanolic acid 28‐Oβ‐D ‐glucopyranosyl ester ( 1 ) and the corresponding monodesmoside, 3‐O‐[β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐galactopyranosyl‐(1→3)‐β‐glucuronopyranosyl]oleanolic acid ( 2 ), have been isolated from the leaves of Guapira graciliflora (Nyctaginaceae), together with two further oleanane saponins, 3 and 4 , daucosterol ( 5 ), and two known glycerogalactolipids, 6 and 7 . The structures of the new compounds were established by extensive NMR and MS experiments, in conjunction with acid hydrolysis and sugar analysis. This is the first report on the phytochemistry of plants of the genus Guapira.  相似文献   

13.
Four new triterpenoid glycosides named asiaticoside C ( 1 ), D ( 2 ), E ( 3 ), and F ( 4 ) were isolated from the BuOH fraction of the EtOH extract of whole plants of Centella asiatica, together with three known compounds, asiaticoside ( 5 ), madecassoside ( 6 ), and scheffuroside B ( 7 ). Based on FAB‐MS, IR, 1H‐ and 13C‐NMR, and 2D‐NMR data (HMQC, HMBC, COSY), the structures of the new compounds were determined as (2α,3β,4α)‐23‐(acetyloxy)‐2,3‐dihydroxyurs‐12‐en‐28‐oic acid Oα‐L ‐rhamnopyranosyl‐(1→4)‐Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 1 ), (2α,3β)‐2,3‐dihydroxyurs‐12‐en‐28‐oic acid Oα‐L ‐rhamnopyranosyl‐(1→4)‐Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 2 ), asiatic acid 6‐Oβ‐D ‐glycopyranosyl‐β‐D ‐glucopyranosyl ester ( 3 ), (3β,4α)‐3,23‐dihydroxyurs‐12‐en‐28‐oic acid Oα‐L ‐rhamnopyranosyl‐(1→4)‐Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 4 ).  相似文献   

14.
Two dammarane‐type saponins with a novel aglycone derived from the parent 16,22‐epoxy‐24‐methylidenedammarane and lotoside A, a new lotogenin derivative, were isolated from the MeOH extract of the stem bark of the Brazilian medicinal plant Zizyphus joazeiro, in addition to the known saponin 3β‐{{O‐[O‐[α‐L ‐arabinofuranosyl‐(1→2)]‐O‐[β‐D ‐glucopyranosyl‐(1→3)]]‐α‐L ‐arabinopyranosyl}oxy}jujubogenin ( 1 ). The structures of the new compounds were determined as 16,22‐epoxy‐3β‐[(β‐D ‐glucopyranosyl)oxy]‐24‐methylidenedammarane‐15α,16α,20β‐triol ( 2 ), 16,22‐epoxy‐3β‐{{O‐[O‐[β‐D ‐glucopyranosyl‐(1→2)]‐O‐[β‐D ‐apiofuranosyl‐(1→3)]]‐β‐D ‐glucopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl}oxy}‐24‐methylidenedammarane‐15α,16α,20β‐triol ( 3 ), and 3β‐{{O‐[O‐[β‐D ‐glucopyranosyl‐(1→2)]‐O‐[β‐D ‐apiofuranosyl‐(1→3)]]‐β‐D ‐glucopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl}oxy}lotogenin ( 4 ) by means of 1D‐ and 2D‐NMR spectroscopy, as well as FAB mass spectrometry. For the novel aglycone, we propose the name joazeirogenin and, for the new saponins, joazeiroside A ( 2 ) and B ( 3 ). Joazeirogenin was found to be 16,22‐epoxy‐24‐methylidenedammarane‐3β,15α,16α,20β‐tetrol.  相似文献   

15.
Three new medicagenic acid saponins, micranthosides A–C ( 1 – 3 ), were isolated from the roots of Polygala micrantha Guill . & Perr ., along with six known presenegenin saponins. Their structures were elucidated on the basis of extensive 1D‐ and 2D‐NMR experiments (1H, 13C, DEPT, COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry as 3‐Oβ‐D ‐glucopyranosylmedicagenic acid 28‐[Oβ‐D ‐galactopyranosyl‐(1→4)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranosyl] ester ( 1 ), 3‐Oβ‐D ‐glucopyranosylmedicagenic acid 28‐[O‐6‐O‐acetyl‐β‐D ‐galactopyranosyl‐(1→4)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranosyl] ester ( 2 ), and 3‐O‐{Oβ‐D ‐glucopyranosyl‐(1→3)‐O‐[β‐D ‐glucopyranosyl‐(1→6)]‐β‐D ‐glucopyranosyl}medicagenic acid 28‐{Oβ‐D ‐apiofuranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[β‐D ‐apiofuranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranosyl} ester ( 3 ). Compounds 1 – 3 were evaluated against HCT 116 and HT‐29 human colon cancer cells, but they did not show any cytotoxicity.  相似文献   

16.
The two new polyoxygenated spirostanol bisdesmosides 1 and 2 and the new trisdesmoside 3 , named hellebosaponin A ( 1 ), B ( 2 ), and C ( 3 ), respectively, were isolated from the MeOH extract of the rhizomes of Helleborus orientalis. The structures of the new compounds were elucidated as (1β,3β,23S,24S)‐21‐(acetyloxy)‐24‐[(β‐D ‐fucopyranosyl)oxy]‐3,23‐dihydroxyspirosta‐5,25(27)‐dien‐1‐yl O‐β‐D ‐apiofuranosyl‐(1→3)‐O‐(4‐O‐acetyl‐α‐L ‐rhamnopyranosyl)‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐α‐L ‐arabinopyranoside ( 1 ), (1β,3β,23S,24S)‐ 21‐(acetyloxy)‐24‐{[Oβ‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐fucopyranosyl]oxy}‐3,23‐dihydroxyspirosta‐5,25(27)‐dien‐1‐yl Oβ‐D ‐apiofuranosyl‐(1→3)‐O‐(4‐O‐acetyl‐α‐L ‐rhamnopyranosyl)‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐ α‐L ‐arabinopyranoside ( 2 ), and (1β,3β,23S,24S)‐24‐[(β‐D ‐fucopyranosyl)oxy]‐21‐{[Oβ‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐galactopyranosyl]oxy}‐3,23‐dihydroxyspirosta‐5,25(27)‐dien‐1‐yl Oβ‐D ‐apiofuranosyl‐(1→3)‐O‐(4‐O‐acetyl‐α‐L ‐rhamnopyranosyl)‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐α‐L ‐arabinopyranoside ( 3 ), respectively, on the basis of detailed spectroscopic studies and chemical evidence.  相似文献   

17.
The four new acylated triterpene saponins 1 – 4 , isolated as two pairs of isomers and named libericosides A1/A2 and B1/B2, one pair of isomers 5 / 6 , the (Z)‐isomer libericoside C2 ( 5 ) being new, one new sucrose ester, atroximoside ( 7 ), and eight known compounds were isolated from the roots of Atroxima liberica by repeated MPLC and VLC on normal and reversed‐phase silica gel. Their structures were elucidated on the basis of extensive 1D‐ and 2D‐NMR studies (1H‐ and 13C‐NMR, DEPT, COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry as 3‐Oβ‐D ‐glucopyranosylpresenegenin 28‐{Oα‐L ‐arabinopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐4‐O‐[(E)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 1 ) and its (Z)‐isomer 2 , 3‐Oβ‐D ‐glucopyranosylpresenegenin 28‐{Oα‐L ‐arabinopyranosyl‐(1→4)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[O‐β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐[(E)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 3 ) and its (Z)‐isomer 4 , 3‐Oβ‐D ‐glucopyranosylpresenegenin 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[6‐O‐acetyl‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐[(Z)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 5 ), and 3‐O‐[(Z)‐feruloyl]‐β‐D ‐fructofuranosyl α‐D ‐glucopyranoside ( 7 ). Compounds 1 – 6 and the known saponins 8 / 9 were evaluated against the human colon cancer cells HCT 116 and HT‐29 and showed moderate to weak cytotoxicity.  相似文献   

18.
Two new compounds, (6S,13S)‐6‐{[β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}cleroda‐3,14‐dien‐13‐ol ( 1 ) and kadsuric acid 3‐methyl ester ( 2 ), together with nine known compounds, (6S,13E)‐6‐{[β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}cleroda‐3,13‐dien‐15‐ol ( 3 ), (6S,13S)‐6‐[6‐O‐acetyl‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}‐13‐{[α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐fucopyranosyl]oxy}cleroda‐3,14‐diene ( 4 ), (6S,13S)‐6‐{[6‐Oβ‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}‐13‐{[α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐fucopyranosyl]oxy}cleroda‐3,14‐diene ( 5 ), 15‐hydroxydehydroabietic acid ( 6 ), 15‐hydroxylabd‐8(17)‐en‐19‐oic acid ( 7 ), junicedric acid ( 8 ), (4β)‐kaur‐16‐en‐18‐oic acid ( 9 ), (4β)‐16‐hydroxykauran‐18‐oic acid ( 10 ), and (4β,16β)‐16‐hydroxykauran‐18‐oic acid ( 11 ) were isolated from the fronds of Dicranopteris linearis or D. ampla. Their structures were established by extensive 1D‐ and 2D‐NMR spectroscopy. Compounds 1 and 3 – 8 showed no anti‐HIV activities.  相似文献   

19.
Four new furostanol steroid saponins, borivilianosides A–D ( 1 – 4 , resp.), corresponding to (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐hydroxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside ( 1 ), (3β,5α,22R,25R)‐ 26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside ( 2 ), (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐O‐[β‐D ‐glucopyranosyl‐(1→2)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 3 ), and (3β,5α,25R)‐26‐(β‐D ‐glucopyranosyloxy)furost‐20(22)‐en‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐O‐[β‐D ‐glucopyranosyl‐(1→2)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 4 ), together with the known tribuluside A and (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside were isolated from the dried roots of Chlorophytum borivilianum Sant and Fern . Their structures were elucidated by 2D ‐NMR analyses (COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry.  相似文献   

20.
Eight new acylated triterpene saponins 1 – 8 were isolated from the roots of Polygala arenaria as four inseparable (E)/(Z) mixtures of the 4‐methoxycinnamoyl and 3,4‐dimethoxycinnamoyl derivatives by repeated MPLC over silica gel. Their structures were established mainly by 600‐MHz 2D‐NMR techniques (1H,1H‐COSY, TOCSY, NOESY, HSQC, HMBC) as 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐(Oβ‐D ‐galactopyranosyl‐(1→4)‐O‐[β‐D ‐glucopyranosyl‐(1→3)]‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐{4‐O‐[(E)‐4‐methoxycinnamoyl]}‐β‐D ‐fucopyranosyl) ester and its (Z)‐isomer ( 1 / 2 ), 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐(Oβ‐D ‐galactopyranosyl‐(1→4)‐O‐[β‐D ‐glucopyranosyl‐(1→3)]‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐{4‐O‐[(E)‐3,4‐dimethoxycinnamoyl]}‐β‐D ‐fucopyranosyl) ester and its (Z)‐isomer ( 3 / 4 ), 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐(Oβ‐D ‐glucopyranosyl‐(1→3)‐Oα‐L ‐arabinopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐{4‐O‐[(E)‐4‐methoxycinnamoyl]}‐β‐D ‐fucopyranosyl) ester and its (Z)‐isomer ( 5 / 6 ), and 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐(Oβ‐D ‐glucopyranosyl‐(1→3)‐Oα‐L ‐arabinopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐{4‐O‐[(E)‐3,4‐dimethoxycinnamoyl]}‐β‐D ‐fucopyranosyl) ester and its (Z)‐isomer ( 7 / 8 ) (presenegenin=(2β,3β)‐2,3,27‐trihydroxyolean‐12‐ene‐23,28‐dioic acid). In our in vitro lymphocyte proliferation assay (Jurkat T‐leukemia cells), a fraction containing 1 – 4 showed a concentration‐dependent immunomodulatory effect. This effect was not found for the prosapogenin (tenuifolin=3‐O‐(β‐D ‐glucopyranosyl)presenegenin), underlining the importance of the acyl? oligosaccharidic moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号