首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Grubbs–Hoveyda metathesis catalyst bearing a tris(perfluoroalkyl)silyl tag for efficient noncovalent attachment to fluorous silica gel (FSG) was synthesized and employed in ring‐closing metathesis (RCM) reactions in CH2Cl2. After the reaction, a solvent switch to a polar system allowed for recovery of the catalyst by filtration and its reuse. The approach was demonstrated for a number of different substrates. Furthermore, it was shown that the application of this catalytic system yielded products with low ruthenium content.  相似文献   

2.
A new molecular recognition motif between a water soluble pillar[10]arene ( WP10 ) and 1,10‐phenanthrolinium guest ( G ) in water is established. Mainly driven by the cooperativity of multiple electrostatic interactions, hydrophobic interactions, and π–π stacking interactions between WP10 and G , this host–guest complex exhibits a high association constant in water, which is about 17 times higher than that between WP10 and paraquat ( PQ ). Furthermore, this size selective host–guest complexation is employed to tune the lower critical solution temperature behavior of a random copolymer with PQ derivative pendants.

  相似文献   


3.
A new highly efficient and versatile poly(benzyl ether) dendritic organogelator HPB‐G1 with 2‐(2′‐hydroxyphenyl)benzoxazole (HPB) at the focal point has been designed and synthesized. HPB‐G1 can form stable organogels toward various apolar and polar organic solvents. Further studies revealed that intermolecular multiple π–π stacking interactions are the main driving forces for the formation of the organogels. Notably, dendron HPB‐G1 exhibited a significantly enhanced emission in the gel state in contrast to weak emission in solution. Most interestingly, these dendritic organogels exhibited multiple stimuli‐responsive behaviors upon exposure to environmental stimuli, including temperature, sonication, shear stress, and the presence of anions, metal cations, acids/bases, thus leading to reversible sol–gel phase transitions.  相似文献   

4.
《化学:亚洲杂志》2017,12(9):968-972
Hybridization of a self‐assembled, spherical complex with oligosaccharides containing Lewis X, a functional trisaccharide displayed on various cell surfaces, yielded well‐defined glycoclusters. The self‐assembled glycoclusters exhibited homophilic hyper‐assembly in aqueous solution in a Ca2+‐dependent manner through specific carbohydrate–carbohydrate interactions, offering a structural scaffold for functional biomimetic systems.  相似文献   

5.
Hybrid raspberry‐like colloids (HRCs) were prepared by employing cucurbit[8]uril (CB[8]) as a supramolecular linker to assemble functional polymeric nanoparticles onto a silica core. The formed HRCs are photoresponsive and can be reversibly disassembled upon light irradiation. This facile supramolecular approach provides a platform for the synthesis of colloids with sophisticated structures and properties.  相似文献   

6.
7.
By making use of the host–guest interactions between the host molecule tris‐o‐phenylenedioxycyclotriphosphazene (TPP) and the rod–coil block copolymer (BCP) poly(ethylene oxide)‐block‐poly(octyl 4′‐octyloxy‐2‐vinylbiphenyl‐4‐carboxylate) (PEO‐b‐PVBP), the supramolecular rod–rod block copolymer P(EO@TPP)‐b‐PVBP was constructed. It consists of a crystalline segment P(EO@TPP) with a hexagonal crystalline structure and a columnar nematic liquid‐crystalline segment (PVBP). As the PVBP segments arrange themselves as columnar nematic phases, the crystalline structure of the inclusion complex P(EO@TPP), which has a smaller diameter, is destroyed. The self‐assembled nanostructure is thus clearly affected by the interplay between the two blocks. On the basis of wide‐ and small‐angle X‐ray scattering analysis, we conclude that the supramolecular rod–rod BCP can self‐assemble into a cylinder‐in‐cylinder double hexagonal structure.  相似文献   

8.
9.
Despite the remarkable progress made in controllable self‐assembly of stimuli‐responsive supramolecular polymers (SSPs), a basic issue that has not been consideration to date is the essential binding site. The noncovalent binding sites, which connect the building blocks and endow supramolecular polymers with their ability to respond to stimuli, are expected to strongly affect the self‐assembly of SSPs. Herein, the design and synthesis of a dual‐stimuli thermo‐ and photoresponsive Y‐shaped supramolecular polymer (SSP2) with two adjacent β‐cyclodextrin/azobenzene (β‐CD/Azo) binding sites, and another SSP (SSP1) with similar building blocks, but only one β‐CD/Azo binding site as a control, are described. Upon gradually increasing the polymer solution temperature or irradiating with UV light, SSP2 self‐assemblies with a higher binding‐site distribution density; exhibits a flower‐like morphology, smaller size, and more stable dynamic aggregation process; and greater controllability for drug‐release behavior than those observed with SSP1 self‐assemblies. The host–guest binding‐site‐tunable self‐assembly was attributed to the positive cooperativity generated among adjacent binding sites on the surfaces of SSP2 self‐assemblies. This work is beneficial for precisely controlling the structural parameters and controlled release function of SSP self‐assemblies.  相似文献   

10.
Taking tetraoxacalix[2]arene[2]triazine as a functionalization platform, a series of new amphiphilic molecules were synthesized in 18 to 53 % yields by using a fragment coupling protocol. These amphiphilic molecules self‐assembled into stable vesicles in a mixture of THF and water, with the surface of the vesicles engineered by electron‐deficient cavities. Various anions are able to selectively influence the size of self‐assembled vesicles, following the order of F?<ClO4?<SCN?<BF4?<Br?<Cl?<NO3?, as revealed by DLS measurements. Such a sequence was independent with the hydration cost and in agreement with the binding strength of anions with tetraoxacalix[2]arene[2]triazine host molecule, indicating that the anion–π interaction most probably competed over other possible weak interactions and accounted for this interesting selectivity. In addition, the chloride permeation process across the membrane of the vesicles was also preliminarily studied by means of fluorescent experiments. This study, in addition to providing the potentiality of heteracalixaromatics as new models to construct functional vesicles, opens a new avenue to study the anion–π interactions in aqueous and also potentially in living systems.  相似文献   

11.
We report here the noncovalent synthesis of thermosensitive dendrimers. Short oligoguanosine strands were linked to the focal point of a dendron by using “click chemistry”, and quadruplex formation was used to drive the self‐assembly process in the presence of metal ions. The dynamic nature of these noncovalent assemblies can be exploited to create combinatorial libraries of dendrimers as demonstrated by the co‐assembly of two components. These supramolecular dendrimers showed thermoresponsive behavior that can be tuned by varying the templating cations or the number of guanines in the oligonucleotide strand.  相似文献   

12.
The cation–π interaction is a strong non‐covalent interaction that can be used to prepare high‐strength, stable supramolecular materials. However, because the molecular plane of a cation‐containing group and that of aromatic structure are usually perpendicular when forming a cation–π complex, it is difficult to exploit the cation–π interaction to prepare a 2D self‐assembly in which the molecular plane of all the building blocks are parallel. Herein, a double cation–π‐driven strategy is proposed to overcome this difficulty and have prepared 2D self‐assemblies with long‐range ordered molecular hollow hexagons. The double cation–π interaction makes the 2D self‐assemblies stable. The 2D self‐assemblies are to be an effective carrier that can eliminate metal‐nanoparticle aggregation. Such 2D assembly/palladium nanoparticle hybrids are shown to exhibit recyclability and superior catalytic activity for a model reaction.  相似文献   

13.
14.
The size‐ and orientation‐selective formation of the shortest‐possible C70 peapod in solution and in the solid state by using the shortest structural unit of an “armchair” carbon nanotube (CNT), cycloparaphenylene (CPP), has been studied. [10]CPP and [11]CPP exothermically formed 1:1 complexes with C70, thereby giving the resulting peapods. A van′t Hoff plot analysis revealed that the formation of these complexes in 1,2‐dichlorobenzene was mainly driven by entropy, whereas the theoretical calculations suggested that the formation of the complex in the gas phase was predominantly driven by enthalpy. C70 was found to exist in two distinct orientations inside the CPP cavity, namely “lying” and “standing”, depending on the specific size of the CPP. The theoretical calculations and the X‐ray crystallographic analysis revealed that the interactions between [10]CPP and the short axis of C70 in its lying orientation were isotropic and similar to those observed between [10]CPP and C60. However, the interactions between [11]CPP and C70 in its standing orientation were anisotropic, thereby involving the radial deformation of [11]CPP into an ellipsoidal shape. This “induced fit” maximized the van der Waals interactions with the long axis of C70. Theoretical calculations revealed that the deformation occurred readily with low energy loss, thus suggesting that CPPs are highly radially elastic molecules. These results also indicate that the same type of radial deformation should occur in CNT peapods that encapsulate anisotropic fullerenes.  相似文献   

15.
This article analyzes the interplay between lone pair–π (lp–π) or anion–π interactions and halogen‐bonding interactions. Interesting cooperativity effects are observed when lp/anion–π and halogen‐bonding interactions coexist in the same complex, and they are found even in systems in which the distance between the anion and halogen‐bond donor molecule is longer than 9 Å. These effects are studied theoretically in terms of energetic and geometric features of the complexes, which are computed by ab initio methods. Bader′s theory of “atoms in molecules” is used to characterize the interactions and to analyze their strengthening or weakening depending upon the variation of charge density at critical points. The physical nature of the interactions and cooperativity effects are studied by means of molecular interaction potential with polarization partition scheme. By taking advantage of all aforementioned computational methods, the present study examines how these interactions mutually influence each other. Additionally, experimental evidence for such interactions is obtained from the Cambridge Structural Database (CSD).  相似文献   

16.
The formation of reversible switchable nanostructures monitored by solution and solid‐state methods is still a challenge in supramolecular chemistry. By a comprehensive solid state and solution study we demonstrate the potential of the fivefold symmetrical building block of pentaphosphaferrocene in combination with CuI halides to switch between spheres of different porosity and shape. With increasing amount of CuX, the structures of the formed supramolecules change from incomplete to complete spherically shaped fullerene‐like assemblies possessing an Ih‐C80 topology at one side and to a tetrahedral‐structured aggregate at the other. In the solid state, the formed nano‐sized aggregates reach an outer diameter of 3.14 and 3.56 nm, respectively. This feature is used to reversibly encapsulate and release guest molecules in solution.  相似文献   

17.
《化学:亚洲杂志》2018,13(19):2818-2823
The development of artificial self‐assembling systems with dynamic photo‐regulation features in aqueous solutions has drawn great attention owing to the potential applications in fabricating elaborate biological materials. Here we demonstrate the fabrication of water‐soluble cucurbit[8]uril (CB[8])‐mediated supramolecular polymers by connecting the fluorinated azobenzene (FAB) containing monomers through host‐enhanced heteroternary π–π stacking interactions. Benefiting from the unique visible‐light‐induced EZ photoisomerization of the FAB photochromophores, the encapsulation behaviors between the CB[8] macrocycle and the monomers could be regulated upon visible light irradiation, resulting in the depolymerization of such CB[8]‐mediated supramolecular polymers.  相似文献   

18.
Recent advances in host–guest chemistry have significantly influenced the construction of supramolecular soft biomaterials. The highly selective and non‐covalent interactions provide vast possibilities of manipulating supramolecular self‐assemblies at the molecular level, allowing a rational design to control the sizes and morphologies of the resultant objects as carrier vehicles in a delivery system. In this Focus Review, the most recent developments of supramolecular self‐assemblies through host–guest inclusion, including nanoparticles, micelles, vesicles, hydrogels, and various stimuli‐responsive morphology transition materials are presented. These sophisticated materials with diverse functions, oriented towards therapeutic agent delivery, are further summarized into several active domains in the areas of drug delivery, gene delivery, co‐delivery and site‐specific targeting deliveries. Finally, the possible strategies for future design of multifunctional delivery carriers by combining host–guest chemistry with biological interface science are proposed.  相似文献   

19.
Supramolecular chemistry in confined spaces constructed from macrocyclic molecules has attracted much attention because it can utilize the specific binding properties of macrocyclic cavities. Herein we report the preparation of length‐controlled discrete tubular structures by homo‐/co‐assembly of rim‐differentiated and peralkylamino‐substituted pillar[5]arenes via hydrogen bonds and salt bridges. By dimerization and trimerization, the expanded tubes show a fivefold helical structure and stepwise binding, respectively. We found that the exchange speed of guest molecules in the tubes could be controlled by varying the tube length.  相似文献   

20.
Polyvalent carbohydrate–protein interactions occur frequently in biology, particularly in recognition events on cellular membranes. Collectively, they can be much stronger than corresponding monovalent interactions, rendering it difficult to control them with individual small molecules. Artificial macromolecules have been used as polyvalent ligands to inhibit polyvalent processes; however, both reproducible synthesis and appropriate characterization of such complex entities is demanding. Herein, we present an alternative concept avoiding conventional macromolecules. Small glycodendrimers which fulfill single molecule entity criteria self‐assemble to form non‐covalent nanoparticles. These particles—not the individual molecules—function as polyvalent ligands, efficiently inhibiting polyvalent processes both in vitro and in vivo. The synthesis and characterization of these glycodendrimers is described in detail. Furthermore, we report on the characterization of the non‐covalent nanoparticles formed and on their biological evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号