首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2006,18(16):1578-1583
A dopamine (DA) polymer was deposited electrochemically on to a glassy carbon (GC) surface until the electrode surface was passivated. The DA film on the GC surface was re‐formed for high sensitivity and reproducibility by electrochemical degradation. The re‐formed electrode was sensitive and selective in the determination of DA in the presence of ascorbic acid. The linear range obtained by square‐wave voltammetry was between 0.1 and 2.1 μM (R=0.996, n=6) with a sensitivity of 1.2 μA μM?1 and a detection limit (S/N=3) of 0.04 μM. The electropolymerized DA film was stable and the re‐formed electrode was reproducible for DA determination.  相似文献   

2.
《Electroanalysis》2004,16(23):1977-1983
2,2‐bis(3‐Amino‐4‐hydroxyphenyl)hexafluoropropane (BAHHFP) was electro‐polymerized oxidatively on glassy carbon by cyclic voltammetry. The activity of the modified electrode towards ascorbic acid (AA), uric acid (UA) and dopamine (DA) was characterized with cyclic voltammetry and differential puls voltammetry (DPV). The findings showed that the electrode modification drastically suppresses the response of AA and shifts it towards more negative potentials. Simultaneously an enhancement of reaction reversibility is seen for DA and UA. Unusual, selective preconcentration features are observed for DA when the polymer‐modified electrode is polarized at negative potential. In a ternary mixture containing the three analytes studied, three baseline resolved peaks are observed in DPV mode. At physiological pH 7.4, after 5 min preconcentration at ?300 mV, peaks positions were ?0.073, 0.131 and 0.280 V (vs. Ag/AgCl) for AA, DA and UA, respectively. Relative selectivities DA/AA and UA/AA were over 4000 : 1 and 700 : 1, respectively. DA response was linear in the range 0.05–3 μM with sensitivity of 138 μA μM?1 cm?2 and detection limit (3σ) of 5 nM. Sensitive quantification of UA was possible in acidic solution (pH 1.8). Under such conditions a very sharp peak appeared at 630 mV (DPV). The response was linear in the range 0.5–100 μM with sensitivity of 4.67 μA μM?1 cm?2 and detection limit (3σ) of 0.1 μM. Practical utility was illustrated by selective determination of UA in human urine.  相似文献   

3.
Dopamine (DA) is a significant neurotransmitter in the central nervous system, coexisting with uric acid (UA) and ascorbic acid (AA). UA and AA are easily oxidizable compounds having potentials close to that of DA for electrochemical analysis, resulting in overlapping voltammetric response. In this work, a novel molecularly imprinted (MI) electrochemical sensor was proposed for selective determination of DA (in the presence of up to 80‐fold excess of UA and AA), relying on gold nanoparticles (Aunano)‐decorated glassy carbon (GC) electrode coated with poly(carbazole (Cz)‐co‐aniline (ANI)) copolymer film incorporating DA as template (DA imprinted‐GC/P(Cz‐co‐ANI)‐Aunano electrode, DA‐MIP‐Aunano electrode). The DA recognizing sensor electrode showed great electroactivity for analyte oxidation in 0.2 mol L?1 pH 7 phosphate buffer. Square wave voltammetry (SWV) was performed within 10?4–10?5 mol L?1 of DA, of which the oxidation peak potential was observed at 0.16 V. The limit of detection (LOD) and limit of quantification (LOQ) were 2.0×10?6 and 6.7×10?6 mol L?1, respectively. Binary and ternary synthetic mixtures of DA‐UA, DA‐AA and DA‐UA‐AA yielded excellent recoveries for DA. Additionally, DA was quantitatively recovered from a real sample of bovine serum spiked with DA, and determined in concentrated dopamine injection solution. The developed SWV method was statistically validated against a literature potentiodynamic method using a caffeic acid modified‐GC electrode.  相似文献   

4.
Highly stable Nafion‐covered hexacyanoferrate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐Fe(CN)64?/Naf) film modified glassy carbon electrode (GCE), for the selective detection of dopamine (DA) in the presence of ascorbic acid (AA), was prepared by first ion‐exchanging Fe(CN)64? into PLL‐GA coating on GCE then sealing it with a Nafion outer layer. The Nafion over layer is crucial in preventing leaching of Fe(CN)64? ions from the inner layer. The first layer was acting as electrocatalyst for DA oxidation and the outer coating acted as discriminating layer for selective permeation of DA in the presence of interfering anionic species. More than 90% of the initial response was retained after coating with the Nafion protecting layer compared to a huge loss (>60%) without Nafion outer layer. 5% Nafion coating was identified as optimum thickness for the selective detection of DA in the presence of AA.  相似文献   

5.
A chemically modified electrode was successfully fabricated by means of depositing a thin layer of nickel hexacyanoferrate (NiHCF) on an amine adsorbed graphite paraffin wax composite electrode using a new approach. The electrode was further coated with Nafion. The electrochemical characteristics of the modified electrode were studied using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The modified electrode catalyzed dopamine (DA) oxidation in the concentration range of 1.5×10?6 to 1.2×10?3 M without the interference from ascorbic acid (AA). A detection limit of 4.9×10?7 M was obtained for DA in the presence of AA with a correlation coefficient of 0.9972 based on S/N=3. Flow injection analysis was used for the determination of dopamine with excellent reproducible results. The analytical utility of the sensor was evaluated for detection of DA in urine.  相似文献   

6.
A sensitive and selective electrochemical method for the determination of dopamine (DA) was developed using a 4‐(2‐Pyridylazo)‐Resorcinol (PAR) polymer film modified glassy carbon electrode (GCE). The PAR polymer film modified electrode shows excellent electrocatalytic activity toward the oxidation of DA in a phosphate buffer solution (PBS) (pH 4.0). The linear range of 5.0×10?6–3.0×10?5 M and detection limit of 2.0×10?7 M were observed. Simultaneous detection of AA, DA and UA has also been demonstrated on the modified electrode. This work provides a simple and easy approach to selective detection of DA in the presence of AA and UA.  相似文献   

7.
Simultaneous determination of a neurotransmitter, dopamine (DA), and ascorbic acid (AA) is achieved at neutral pH on a chitosan incorporating cetyltrimethylammonium bromide (CTAB) modified glassy carbon (GC) electrode. Differential pulse voltammetry (DPV) technique was used to investigate the electrochemical response of DA and AA at a glassy carbon electrode modified with chitosan incorporating CTAB. An optimum 6.0 mmol L?1 of CTAB together with 0.5 wt% of chitosan was used to improve the resolution and the determination sensitivity. In 0.1 mol L?1 aqueous phosphate buffer solution of pH 6.8, the chitosan‐CTAB modified electrode showed a good electrocatalytic response towards DA and AA. The anodic peak potential of DA shifted positively, while that of AA shifted negatively. Thus, the difference of the anodic peaks of DA and AA reached 0.23 V, which was enough to separate the two anodic peaks very well. The presented method herein could be applied to the direct simultaneous determination of DA and AA without prior treatment. The anodic peak currents (Ipa) of DPV are proportional to DA in the concentration range of 8 μM to 1000 μM, to that of AA 10 μM to 2000 μM, with correlation coefficients of 0.9930 and 0.9945, respectively. The linear range is much wider than previously reported.  相似文献   

8.
《Electroanalysis》2006,18(15):1523-1530
In this study, a glassy carbon electrode (GC) was modified with an electropolymerized film of 1‐naphthylamine (1‐NAP) with a subsequent overoxidation treatment in 0.2 M sodium hydroxide solution. This polymer p‐1‐NAPox film coated GC electrode was used for the selective determination of dopamine (DA) in the presence of a triple concentration of ascorbic acid (AA).These studies were performed using cyclic voltammetry and square‐wave voltammetry at physiological pH. p‐1‐NAPox shows an attractive permselectivity, a marked enhancement of the current response and antifouling properties when compared to a bare GC electrode activated in basic media. With a preconcentration time of 3 minutes at open circuit, linear calibration plots were obtained for DA in buffer solution (pH 7.4) over the concentration range from 1×10?6–1×10?4 M with a detection limit of 1.59×10?7 M.  相似文献   

9.
Single‐walled carbon nanotubes (SWCNTs) were immobilized on glassy carbon (GC) electrode by drop casting The resulting modified electrode (represented as GC/SWCNTs) efficiently oxidizes acetaminophen (AC), dopamine (DA) and pyridoxine (PY) by decreasing the respective oxidation potentials and increasing peak currents in comparison to bare GC electrode. The extent of lowering of overpotentials is in the order of AC>PY>DA, in agreement with the order of decrease in the HOMO‐LUMO energy gap (ΔE) of these analytes, as determined from Density Functional Theory (DFT) calculations. DFT calculations further reveal that due to the interaction of the analytes on the SWCNT(10,10) there is a negative charge density transfer (higher probability of electron transfer, lower ΔE value) to the frontier molecular orbitals of the analytes, which eases their oxidation. Since AC, DA and PY oxidize distinctly at distinct potential values, the present SWCNTs modified electrodes could be used to simultaneously determine them. Cyclic voltammetry, differential pulse voltammetry and amperometry techniques are utilized to understand the electrochemical characteristics of the analytes (AC, DA and PY) and subsequent sensing of them at the GC/SWCNTs electrode. The electrode is then applied to the determination of AC as a case study. Sensitivity, detection limit and linear calibration range for the AC are found to be 7.9 μA μM?1 cm?2, 1.1 μM and 2.0–100.0 μM, respectively. The increased electroactive surface area of the GC/SWCNTs increases the oxidation peak currents and hence increases the sensitivity of the determination.  相似文献   

10.
The present study reports the simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) in 0.20 M phosphate buffer solution (pH 5.0) using electropolymerized ultrathin film of 5-amino-2-mercapto-1,3,4-thiadiazole (AMT) on glassy carbon (GC) electrode. The bare GC electrode does not separate the voltammetric signals of AA, DA and UA. However, electropolymerized AMT (p-AMT) modified GC electrode not only resolved the voltammetric signals of AA, DA and UA but also dramatically enhanced their oxidation peak currents when compared to bare GC electrode. The enhanced oxidation currents for AA, DA and UA at p-AMT modified electrode are due to the electrostatic interactions between them and the polymer film. Using amperometric method, we achieved the lowest detection of 75 nM AA, 40 nM DA and 60 nM UA at p-AMT modified electrode. The amperometric current was linearly increased from 200 nM to 0.80 mM for each AA, DA and UA and the lowest detection limit was found to be 0.92, 0.07 and 0.57 nM, respectively (S/N = 3). The practical application of the modified electrode was demonstrated by the determination of DA in dopamine hydrochloride injection.  相似文献   

11.
《Electroanalysis》2018,30(9):2035-2043
To improve the performance of dopamine (DA) detection in the presence of ascorbic acid (AA) and uric acid (UA), sodium diphenylamine sulfonate/polypyrrole/multi‐walled carbon nanotubes (SDPAS/PPy/CNTs) film was fabricated on the surface of gold electrode through one‐pot polymerization initiated by electrochemical oxidation. SDPAS were covalently embedded into the backbone of PPy to endow the resultant film with numerous negative‐charged terminals, resulting in selective pre‐adsorption of protonated DA+ on the electrode and switching the following anodic reaction to be an adsorption‐controlled process. The detection of DA in the presence of AA and UA by square wave voltammetry method showed an outstanding repeatability with the relative standard deviation of 0.45 %. A good linear relationship was observed between the oxidative peak current and the concentration of DA in the range of 0.827–104 μM (R2=0.993), and the limit of detection (LOD) was calculated to be 0.105 μM (S/N=3).  相似文献   

12.
Electrochemical synthesis of ruthenium oxide (RuOx) onto Nafion-coated glassy carbon (GC) electrode and naked GC electrode were carried out by using cyclic voltammetry. Electrochemical deposition of RuOx onto Nafion-coated electrode was monitored by in situ electrochemical quartz crystal microbalance (EQCM). Surface characterizations were performed by scanning electron microscope (SEM) and atomic force microscope (AFM). SEM and AFM images revealed that ruthenium oxide particles incorporated onto the Nafion polymer film. In addition, a GC electrode modified with ruthenium oxide–Nafion film (RuOx–Nf–GC) was shown excellent electrocatalytic activity towards dopamine (DA) and ascorbic acid (AA). The anodic peak current increases linearly over the concentration range of 50 μM–1.1 mM for DA with the correlation coefficient of 0.999, and the detection limit was found to be (S/N = 3) 5 μM. Owing to the catalytic effect of the modified film towards DA, the modified electrode resolved the overlapped voltammetric responses of AA and DA into two well-defined voltammetric peaks with peak-to-peak separation about 300 mV. Here, RuOx–Nf–GC electrode employed for determination of DA in the presence of AA. This modified electrode showed good stability and antifouling properties.  相似文献   

13.
《Electroanalysis》2005,17(24):2217-2223
Glassy carbon electrode modified by microcrystals of fullerene‐C60 mediates the voltammetric determination of uric acid (UA) in the presence of ascorbic acid (AA). Interference of AA was overcome owing to the ability of pretreated fullerene‐C60‐modified glassy carbon electrode. Based on its strong catalytic function towards the oxidation of UA and AA, the overlapping voltammetric response of uric acid and ascorbic acid is resolved into two well‐defined voltammetric peaks with lowered oxidation potential and enhanced oxidation currents under conditions of both linear sweep voltammetry (LSV) and Osteryoung square‐wave voltammetry (OSWV). At pH 7.2, a linear calibration graph is obtained for UA in linear sweep voltammetry over the range from 0.5 μM to 700 μM with a correlation coefficient of 0.9904 and a sensitivity of 0.0215 μA μM?1 . The detection limit (3σ) is 0.2 μM for standard solution. AA in less than four fold excess does not interfere. The sensitivity and detection limit in OSWV were found as 0.0255 μA μM?1 and 0.12 μM, for standard solution respectively. The presence of physiologically common interferents (i.e. adenine, hypoxanthine and xanthine) negligibly affects the response of UA. The fullerene‐C60‐modified electrode exhibited a stable, selective and sensitive response to uric acid in the presence of interferents.  相似文献   

14.
Multi‐wall carbon nanotubes (MWCNTs) and Nafion composite film (MWCNTs/Nafion) were used for fabricating electrochemical sensors for the voltammetric detection of trace lead(II) and cadmium(II) in several water samples. The morphology and structure of MWCNTs/Nafion film were characterized by scanning electron microscopy (SEM) and infrared spectrum (IR). The electron transfer of MWCNTs/Nafion composite film was examined by cyclic voltammetry (CV) and electrochemical impedance spectrum (EIS). Various experimental parameters, which influenced the response of MWCNTs/Nafion/GC to target metals, were optimized. The results showed that the synergistic effect was obtained on the MWCNTs/Nafion/GC whose sensitivity and stability were better than those of Nafion‐coated electrode (Nafion/GC) or CNTs/GC. Stability of the Pb(II) and Cd(II) stripping signals was excellent with relative standard deviations (RSD) within 5% (n=10) from one electrode preparation to another, and RSD of 30 µg·L?1 Pb(II) and Cd(II) were 2.8% and 3.2% for 20 repeated analysis on one single CNTs/Nafion/GC. Over 50 runs, the stability of Pb and Cd detection at the MWCNTs/Nafion conposites electrode was still satisfactory with RSD lower than 6.0%. The determination limits (S/N=3) of the proposed method were determined to be 100 ng·L?1 for Pb and 150 ng·L?1 for Cd. Finally, the MWCNTs/Nafion/GC was successfully applied to determine Pb(II) and Cd(II) in different water samples with recoveries of 97%–103% for Pb and 96%–104% for Cd.  相似文献   

15.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

16.
A promising electrochemical sensor based nickel‐carbon nanotube (Ni‐CNT) modified on glassy carbon (GC) electrode had been developed and the properties of the modified electrode were characterized by multispectroscopic analysis. The fabricated sensor (GC/Ni‐CNT) electrode was utilized to determine the catecholamines such as epinephrine and dopamine simultaneously. Differential pulse voltammetry and amperometry were used to verify the electrochemical behavior of the studied compounds. The GC/Ni‐CNT based amperometric sensor showed a wide linear range and low detection limit with high analytical sensitivity of 8.31 and 6.61 μA μM?1 for EP and DA, respectively which demonstrates better characteristics compared to other electrodes reported in the literature. Further, no significant change in amperometric current response was observed in presence of biological interference species such as glucose, cysteine, citric acid, uric acid and ascorbic acid in the detection of EP and DA. The utility of this GC/Ni‐CNT electrode was well established for the determination of EP and DA in human urine samples.  相似文献   

17.
An effective nanocomposite sensor for selective electroanalytical dopamine (DA) determination using overoxidized conducting polymer of poly-1,5-diaminonaphthalene (OPoly-1,5-DAN) functionalized graphene nanosheets (GNS) was achieved. The OPoly-1,5-DAN/GNS nanocomposite polymer was prepared via an electropolymerization of 1,5-DAN on GNS/GCE after 7 cycles of potential scan (−0.2 V to +0.9 V), followed by an electrooveroxidation of the nanocomposite Poly-1,5-DAN/GNS by the potential cycle (0.0 V to +1.8 V) for 2 scans. The OPoly-1,5-DAN was effectively designed by GNS as a uniformly distribution of nanocomposite that caused more accumulations of analyte due to large electrocatalytic active positions created on electrode surface. The high specific and sensitive performance of the OPoly-1,5-DAN/GNS nanocomposite polymer was conducted to greater effective electrons transferring behavior for DA with copresent of vitamin C (VC). The stable and suitable formation of OPoly-1,5-DAN/GNS nanocomposite polymer showed rapid charge transport voltammogram and obvious electrocatalytic activity to DA and eliminated VC response. Moreover, the OPoly-1,5-DAN/GNS displays an excellent responses to DA determination with wide linear range (LR) 1.0–150 μM and lower detection limit (DL) 8.82±0.1 nM as comparing with other studies. Additionally, the excellent reproducibility of OPoly-1,5-DAN/GNS as well as long-term stability indicated that it is an excellent and effective electrochemical DA sensor. Finally, the electroanalytical application of the OPoly-1,5-DAN/GNS nanocomposite polymer was employed for the electroanalysis of DA in human urine.  相似文献   

18.
A non‐covalent functionalization based on a copper tetraphenylporphyrin/chemically reduced graphene oxide (Cu‐TPP/CRGO) nanocomposite is demonstrated for selective determination of dopamine (DA) in pharmaceutical and biological samples. A homogeneous electron‐rich environment can be created on the graphene surface by Cu‐TPP due to the π–π non‐covalent stacking interaction. The synthesized Cu‐TPP/CRGO nanocomposite was characterized using scanning electron microscopy NMR, ultraviolet–visible and electrochemical impedance spectroscopies. The electrocatalytic activity of DA was evaluated using cyclic voltammetry and differential pulse voltammetry. The oxidation peak current (Ipa) of DA increased linearly with increasing concentration of DA in the range 2–200 μM. The detection limit was calculated as 0.76 μM with a high sensitivity of 2.46 μA μM?1 cm ? 2. The practicality of the proposed DA sensor was evaluated in DA hydrochloride injection, human urine and saliva, and showed satisfactory recovery results for the detection of DA. In addition, the Cu‐TPP/CRGO nanocomposite‐modified electrode showed excellent stability, repeatability and reproducibility towards the detection of DA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Chromium(VI) is determined through its direct electrochemical reduction in the bulk of a porous glassy carbon electrode. An electrode filled with the acidified sample and Cr(VI) is reduced by means of a constant current whereas the potential of the electrode is monitored. The limits of detection and quantification were found to be 1.9 and 6.0 μg · L−1, resp. The linear range, repeatability and reproducibility were found to be 5–500 μg · L−1, 1.2, and 1.8%, resp. The influence of Fe(III), Ca(II), Mg(II), sulphates, nitrates, humic acids and surfactants was investigated. Total chromium was measured after chemical oxidation of Cr(III) to chromate by permanganate. The method was applied to analyses of water samples.  相似文献   

20.
This paper describes the selective electrochemical determination of paracetamol (PA) in the presence of important interferent, ascorbic acid (AA) using an ultrathin electropolymerized film of 5‐amino‐1,3,4‐thiadiazole‐2‐thiol (p‐ATT) modified glassy carbon (GC) electrode in 0.20 M phosphate buffer solution (pH 7.20). Bare GC electrode failed to resolve the voltammetric signals of AA and PA in a mixture. On the other hand, the p‐ATT modified electrode not only separated the voltammetric signals of AA and PA but also enhanced their peak currents. We achieved the lowest detection limit of 0.34 nM (S/N=3) for PA at p‐ATT modified electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号