首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A silica‐supported monomeric alkylaluminum co‐catalyst was prepared via surface organometallic chemistry by contacting tris(neopentyl)aluminum and partially dehydroxylated silica. This system, fully characterized by solid‐state 27Al NMR spectroscopy augmented by computational studies, efficiently activates (nBu3P)2NiCl2 towards dimerization of ethene, demonstrating comparable activity to previously reported dimeric diethylaluminum chloride supported on silica. Three types of aluminum surface species have been identified: monografted tetracoordinated Al species as well as two types of bisgrafted Al species—tetra‐ and pentacoordinated. Of them, only the monografted Al species is proposed to be able to activate the (nBu3P)2NiCl2 complex and generate the active cationic species.  相似文献   

2.
Identification of the active copper species, and further illustration of the catalytic mechanism of Cu‐based catalysts is still a challenge because of the mobility and evolution of Cu0 and Cu+ species in the reaction process. Thus, an unprecedentedly stable Cu‐based catalyst was prepared by uniformly embedding Cu nanoparticles in a mesoporous silica shell allowing clarification of the catalytic roles of Cu0 and Cu+ in the dehydrogenation of methanol to methyl formate by combining isotope‐labeling experiment, in situ spectroscopy, and DFT calculations. It is shown that Cu0 sites promote the cleavage of the O?H bond in methanol and of the C?H bond in the reaction intermediates CH3O and H2COOCH3 which is formed from CH3O and HCHO, whereas Cu+ sites cause rapid decomposition of formaldehyde generated on the Cu0 sites into CO and H2.  相似文献   

3.
A two‐step hysteretic FeII spin crossover (SCO) effect was achieved in programmed layered Cs{[Fe(3‐CNpy)2][Re(CN)8]}?H2O ( 1 ) (3‐CNpy=3‐cyanopyridine) assembly consisting of cyanido‐bridged FeII‐ReV square grid sheets bonded by Cs+ ions. The presence of two non‐equivalent FeII sites and the conjunction of 2D bimetallic coordination network with non‐covalent interlayer interactions involving Cs+, [ReV(CN)8]3? ions, and 3‐CNpy ligands, leads to the occurrence of two steps of thermal SCO with strong cooperativity giving a double thermal hysteresis loop. The resulting spin‐transition phenomenon could be tuned by an external pressure giving the room‐temperature range of SCO, as well as by visible‐light irradiation, inducing an efficient recovery of the high‐spin FeII state at low temperatures. We prove that octacyanidorhenate(V) ion is an outstanding metalloligand for induction of a cooperative multistep, multiswitchable FeII SCO effect.  相似文献   

4.
Mo0, W0, Fe0, Ru0, Re0, and Zn0 nanoparticles—essentially base metals—are prepared as a general strategy by a sodium naphthalenide ([NaNaph])‐driven reduction of simple metal chlorides in ethers (1,2‐dimethoxyethane (DME), tetrahydrofuran (THF)). All the nanoparticles have diameters ≤10 nm, and they can be obtained either as powder samples or long‐term stable suspensions. Direct follow‐up reactions (e.g., Mo0+S8, FeCl3+AsCl3, ReCl5+MoCl5), moreover, allow the preparation of MoS2, FeAs2, or Re4Mo nanoparticles of similar size as the pristine metals (≤10 nm).  相似文献   

5.
A variety of silica‐based solid phases, whose surfaces are functionalized with ligands containing sulfur and nitrogen elements, are used as self‐supporting adsorbents for environmental remediation evaluation and potential separation application. Each adsorbent is tested for its ability to scavenge five metallic ions: Hg2+, Cu2+, Cd2+, Mn2+, Pb2+, and two organometallic ions: ethylmercury and phenylmercury, from independent homoionic solutions at both neutral and acidic pH values. The results indicate that the percentage of these ions scavenged by a given adsorbent varies, and is found to be highly related to the structural environment in the vicinity of the sulfur and nitrogen elements on the ligand. It is believed that the scavenging of metallic ions is a result of the complexation formation between the metallic ions and the ligands containing sulfur and nitrogen elements, and is not due to the irreversible association chemistry with the sulfur or nitrogen element itself. In the case of organometallic ions, a π‐π interaction is thought to be involved in the adsorption with ligands containing an aromatic moiety in addition to the aforementioned forces. The time needed to reach the maximum percent of adsorption decreases as the amount of adsorbent increases. The longer the adsorption time, the higher percent of ion is removed. Other factors, such as the temperature and the acidity in the liquid phase of the matrix affect the percentage of ions scavenged as well.  相似文献   

6.
Visible‐light irradiation of a ternary hybrid catalyst prepared by grafting a dye, an H2 evolving CoIII catalyst and a CO‐producing ReI catalyst on TiO2 have been found to produce both H2 and CO (syngas) in CO2‐saturated N ,N ‐dimethyl formamide (DMF)/water solution containing a 0.1 m sacrificial electron donor. The H2/CO ratios are effectively controlled by changing either the water content of the solvent or the molar ratio of the ReI and CoIII catalysts ranging from 1:2 to 15:1. The controlled syngas formation is discussed in terms of competitive electron flow from TiO2 to each of the CO2‐reduction and hydrogen‐evolving sites depending on the efficiencies of the two catalytic reaction cycles under given reaction conditions.  相似文献   

7.
The title organometallic compound, fac‐tri­carbonyl‐2κ3C‐(4,4′‐di­methyl‐2,2′‐bi­pyridine)‐2κ2N,N′‐tri­phenyl‐1κ3C1‐tin(II)­rhenium(I)(Sn—Re), [ReSn(C6H5)3(C12H12N2)(CO)3], con­tains three unique π–π stacking interactions. The result is an infinite chain of uninterrupted alternating intra‐ and intermolecular offset π–π stacking interactions throughout the crystal lattice. This extended π–π stacking arrangement, and an additional isolated intramolecular π–π interaction between the remaining 4,4′‐di­methyl‐2,2′‐bi­pyridine ring and a second phenyl group, impose geometric constraints on the Re and Sn atoms, yielding distorted octahedral and tetrahedral coordinations, respectively, for the metal centers.  相似文献   

8.
The first transition‐metal‐only double perovskite compound, Mn2+2Fe3+Re5+O6, with 17 unpaired d electrons displays ferrimagnetic ordering up to 520 K and a giant positive magnetoresistance of up to 220 % at 5 K and 8 T. These properties result from the ferrimagnetically coupled Fe and Re sublattice and are affected by a two‐to‐one magnetic‐structure transition of the Mn sublattice when a magnetic field is applied. Theoretical calculations indicate that the half‐metallic state can be mainly attributed to the spin polarization of the Fe and Re sites.  相似文献   

9.
The reduction of PdII precatalysts to catalytically active Pd0 species is a key step in many palladium‐mediated cross‐coupling reactions. Besides phosphines, the stoichiometrically used organometallic reagents can afford this reduction, but do so in a poorly understood way. To elucidate the mechanism of this reaction, we have treated solutions of Pd(OAc)2 and a phosphine ligand L in tetrahydrofuran with RMgCl (R=Ph, Bn, Bu) as well as other organometallic reagents. Analysis of these model systems by electrospray‐ ionization mass spectrometry found palladate(II) complexes [LnPdR3]? (n=0 and 1), thus pointing to the occurrence of transmetallation reactions. Upon gas‐phase fragmentation, the [LnPdR3]? anions preferentially underwent a reductive elimination to yield Pd0 species. The sequence of the transmetallation and reductive elimination, thus, constitutes a feasible mechanism for the reduction of the Pd(OAc)2 precatalyst. Other species of interest observed include the PdIV complex [PdBn5]?, which did not fragment via a reductive elimination but lost BnH instead.  相似文献   

10.
Hybridization of organometallic complexes with graphene‐based materials can give rise to enhanced catalytic performance. Understanding the chemical structures within hybrid materials is of primary importance. In this work, archetypical hybrid materials are synthesized by the reaction of an organometallic complex, [CoII(acac)2] (acac=acetylacetonate), with N‐doped graphene‐based materials at room temperature. Experimental characterization of the hybrid materials and theoretical calculations reveal that the organometallic cobalt‐containing species is coordinated to heterocyclic groups in N‐doped graphene as well as to its parental acac ligands. The hybrid material shows high electrocatalytic activity for the oxygen reduction reaction (ORR) in alkaline media, and superior durability and methanol tolerance to a Pt/C catalyst. Based on the chemical structures and ORR experiments, the catalytically active species is identified as a Co‐O4‐N structure.  相似文献   

11.
The insertion of an olefin into a preformed metal–carbon bond is a common mechanism for transition‐metal‐catalyzed olefin polymerization. However, in one important industrial catalyst, the Phillips catalyst, a metal–carbon bond is not present in the precatalyst. The Phillips catalyst, CrO3 dispersed on silica, polymerizes ethylene without an activator. Despite 60 years of intensive research, the active sites and the way the first Cr? C bond is formed remain unknown. We synthesized well‐defined dinuclear CrII and CrIII sites on silica. Whereas the CrII material was a poor polymerization catalyst, the CrIII material was active. Poisoning studies showed that about 65 % of the CrIII sites were active, a far higher proportion than typically observed for the Phillips catalyst. Examination of the spent catalyst and isotope labeling experiments showed the formation of a Si–(μ‐OH)–CrIII species, consistent with an initiation mechanism involving the heterolytic activation of ethylene at CrIII? O bonds.  相似文献   

12.
A series of transition‐metal organometallic complexes with commonly occurring metal? chlorine bonding motifs were characterized using 35Cl solid‐state NMR (SSNMR) spectroscopy, 35Cl nuclear quadrupole resonance (NQR) spectroscopy, and first‐principles density functional theory (DFT) calculations of NMR interaction tensors. Static 35Cl ultra‐wideline NMR spectra were acquired in a piecewise manner at standard (9.4 T) and high (21.1 T) magnetic field strengths using the WURST‐QCPMG pulse sequence. The 35Cl electric field gradient (EFG) and chemical shielding (CS) tensor parameters were readily extracted from analytical simulations of the spectra; in particular, the quadrupolar parameters are shown to be very sensitive to structural differences, and can easily differentiate between chlorine atoms in bridging and terminal bonding environments. 35Cl NQR spectra were acquired for many of the complexes, which aided in resolving structurally similar, yet crystallographically distinct and magnetically inequivalent chlorine sites, and with the interpretation and assignment of 35Cl SSNMR spectra. 35Cl EFG tensors obtained from first‐principles DFT calculations are consistently in good agreement with experiment, highlighting the importance of using a combined approach of theoretical and experimental methods for structural characterization. Finally, a preliminary example of a 35Cl SSNMR spectrum of a transition‐metal species (TiCl4) diluted and supported on non‐porous silica is presented. The combination of 35Cl SSNMR and 35Cl NQR spectroscopy and DFT calculations is shown to be a promising and simple methodology for the characterization of all manner of chlorine‐containing transition‐metal complexes, in pure, impure bulk and supported forms.  相似文献   

13.
The mechanism of isopropanol dehydration on amorphous silica–alumina (ASA) was unraveled by a combination of experimental kinetic measurements and periodic density functional theory (DFT) calculations. We show that pseudo‐bridging silanols (PBS‐Al) are the most likely active sites owing to the synergy between the Brønsted and Lewis acidic properties of these sites, which facilitates the activation of alcohol hydroxy groups as leaving groups. Isopropanol dehydration was used to specifically investigate these PBS‐Al sites, whose density was estimated to be about 10−1 site nm−2 on the silica‐doped alumina surface under investigation, by combining information from experiments and theoretical calculations.  相似文献   

14.
The Wilkinson’s catalyst [RhCl(PPh3)3] has been immobilized inside the pores of amine functionalized mesoporous silica material SBA‐3 and The structure of the modified silica surface and the immobilized rhodium complex was determined by a combination of different solid‐state NMR methods. The successful modification of the silica surface was confirmed by 29Si CP‐MAS NMR experiments. The presence of the Tn peaks confirms the successful functionalization of the support and shows the way of binding the organic groups to the surface of the mesopores. 31P‐31P J‐resolved 2D MAS NMR experiments were conducted in order to characterize the binding of the immobilized catalyst to the amine groups of the linkers attached to the silica surface. The pure catalyst exhibits a considerable 31P‐31P J‐coupling, well resolvable in 2D MAS NMR experiments. This J‐coupling was utilized to determine the binding mode of the catalyst to the linkers on the silica surface and the number of triphenylphosphine ligands that are replaced by coordination bonds to the amine groups. From the absence of any resolvable 31P‐31P J‐coupling in off‐magic‐angle‐spinning experiments, as well as slow‐spinning MAS experiments, it is concluded, that two triphenylphosphine ligands are replaced and that the catalyst is bonded to the silica surface through two linker molecules.  相似文献   

15.
《中国化学会会志》2018,65(5):591-596
We demonstrate that silica microspheres can act as a sensitive fluorescent sensor and adsorbent of Ag+ in aqueous media. These thiol‐functionalized silica microspheres are doped with quantum dots (QDs) using organosilane chemistry in a one‐step preparation. Ligand exchange takes place between the thiolated organosilane and acid‐capped QDs, making the doping easy. Ag+ adsorption by the silica microspheres causes the decrease of fluorescence intensity of the QDs. The detection limit for Ag+ is found to be 10 μmol/L. The abundance of thiol groups on the surface of the microspheres could effectively remove Ag+ through strong interaction. When microspheres with a diameter of 1.1 μm are used as the adsorbents, the adsorption capacity for Ag+ reached 102 mg/g. This excellent adsorption ability is due to the abundance of thiol groups that act as the active sites, facilitating the adsorption of the massive metal ions on the surface of the microspheres. Furthermore, the adsorption isotherm data follows the Freundlich model. The structure and content of the silica microspheres were investigated by scanning and high‐resolution transmission electron microscopy, energy dispersive X‐ray spectroscopy, and Raman analysis, and the fluorescence properties were characterized by fluorescence microscopy.  相似文献   

16.
First‐principles calculations were carried out on recently synthesized Re2 and Re3 as well as hypothetical Tc and Mn nitrides. It is found that structure and covalent bonds play an important role in determining mechanical properties. Under a large strain along (0001)〈101 0〉direction, Re2N undergoes a phase transformation with a slight increase in ideal shear strength. On the other hand, it is transformed into a phase with weaker mechanical properties, if the strain is along Re2〈1 21 0〉 direction. Mn2N can be synthesized under moderate conditions due to its more negative formation energy. Re2N, Re3N, and Mn2N show structure‐related mechanical property under larger strains to ReB2 but exhibit much lower ideal strengths, which is attributed to the larger ionicity of cation–anion bond. Three‐dimensional framework of strong covalent bonds is thus highly recommended to design superhard materials. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

17.
Simple reactions of the most used functional groups allowing two molecular fragments to link under mild, sustainable conditions are among the crucial tools of molecular chemistry with multiple applications in materials science, nanomedicine, and organic synthesis as already exemplified by peptide synthesis and “click” chemistry. We are concerned with redox organometallic compounds that can potentially be used as biosensors and redox catalysts and report an uncatalyzed reaction between primary and secondary amines with organometallic electrophilic alkynes that is free of side products and fully “green”. A strategy is first proposed to synthesize alkynyl organometallic precursors upon addition of electrophilic aromatic ligands of cationic complexes followed by endo hydride abstraction. Electrophilic alkynylated cyclopentadienyl or arene ligands of Fe, Ru, and Co complexes subsequently react with amines to yield trans‐enamines that are conjugated with the organometallic group. The difference in reactivities of the various complexes is rationalized from the two‐step reaction mechanism that was elucidated through DFT calculations. Applications are illustrated by the facile reaction of ethynylcobalticenium hexafluorophosphate with aminated silica nanoparticles. Spectroscopic, nonlinear‐optical and electrochemical data, as well as DFT and TDDFT calculations, indicate a strong push–pull conjugation in these cobalticenium– and Fe– and Ru–arene–enamine complexes due to planarity or near‐planarity between the organometallic and trans‐enamine groups involving fulvalene iminium and cyclohexadienylidene iminium mesomeric forms.  相似文献   

18.
The insertion of an olefin into a preformed metal–carbon bond is a common mechanism for transition‐metal‐catalyzed olefin polymerization. However, in one important industrial catalyst, the Phillips catalyst, a metal–carbon bond is not present in the precatalyst. The Phillips catalyst, CrO3 dispersed on silica, polymerizes ethylene without an activator. Despite 60 years of intensive research, the active sites and the way the first Cr C bond is formed remain unknown. We synthesized well‐defined dinuclear CrII and CrIII sites on silica. Whereas the CrII material was a poor polymerization catalyst, the CrIII material was active. Poisoning studies showed that about 65 % of the CrIII sites were active, a far higher proportion than typically observed for the Phillips catalyst. Examination of the spent catalyst and isotope labeling experiments showed the formation of a Si–(μ‐OH)–CrIII species, consistent with an initiation mechanism involving the heterolytic activation of ethylene at CrIII O bonds.  相似文献   

19.
Monomeric CuII sites supported on alumina, prepared using surface organometallic chemistry, convert CH4 to CH3OH selectively. This reaction takes place by formation of CH3O surface species with the concomitant reduction of two monomeric CuII sites to CuI, according to mass balance analysis, infrared, solid‐state nuclear magnetic resonance, X‐ray absorption, and electron paramagnetic resonance spectroscopy studies. This material contains a significant fraction of Cu active sites (22 %) and displays a selectivity for CH3OH exceeding 83 %, based on the number of electrons involved in the transformation. These alumina‐supported CuII sites reveal that C?H bond activation, along with the formation of CH3O‐ surface species, can occur on pairs of proximal monomeric CuII sites in a short reaction time.  相似文献   

20.
Non-oxidative CH4 coupling is promoted by silica with incorporated iron sites, but the role of these sites and their speciation under reaction conditions are poorly understood. Here, silica-supported iron(II) single sites, prepared via surface organometallic chemistry and stable at 1020 °C in vacuum, are shown to rapidly initiate CH4 coupling at 1000 °C, leading to 15–22 % hydrocarbons selectivity at 3–4 % conversion. During this process, iron reduces and forms carburized iron(0) nanoparticles. This reactivity contrasts with what is observed for (iron-free) partially dehydroxylated silica, that readily converts methane, albeit with low hydrocarbon selectivity and after an induction period. This study supports that iron sites facilitate faster initiation of radical reactions and tame the surface reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号