首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient synthesis of 3‐alkyl‐3,4‐dihydro‐4‐thioxobenzoquinazolin‐2(1H)‐ones 3 has been accomplished in two steps and in satisfactory yields from 1‐bromo‐2‐fluorobenzenes 1 . Thus, the reaction of 1‐fluoro‐2‐lithiobenzenes, generated by the Br/Li exchange between 1 and BuLi, with alkyl isothiocyanates, gives N‐alkyl‐2‐fluorobenzothioamides 2 , which, in turn, react with a series of isocyanates in the presence of NaH to give the desired products 3 .  相似文献   

2.
An efficient one‐pot procedure for the preparation of 3‐substituted 3,4‐dihydro‐1,2,3‐benzotriazines 2, 3 , and 4 from o‐bromobenzyl azides 1 is described. The reaction of these azides with BuLi in THF at ?78° generates o‐lithiobenzyl azides via the Br/Li exchange. These lithium compounds immediately undergo intramolecular cyclization to give the corresponding (dihydro‐1,2,3‐benzotriazinyl)lithium intermediates, which are trapped with a variety of acylating agents or BnBr at N(3) exclusively to provide the desired products in moderate to good yields.  相似文献   

3.
A two‐step synthesis of 1‐substituted 3‐alkoxy‐1H‐isoindoles 4 has been developed. Thus, the reaction of 2‐(dialkoxymethyl)phenyllithium compounds, which are easily generated in situ by Br/Li exchange between 1‐bromo‐2‐(dialkoxymethyl)benzenes 1 and BuLi in THF at ?78°, with nitriles afforded [2‐(dialkoxymethyl)phenyl]methanimines 2 , which were treated with a catalytic amount of TsOH?H2O in refluxing CHCl3 to give the desired products in reasonable yields. Similarly, 3‐aryl‐1‐ethoxy‐1‐methyl‐1H‐isoindoles 7 have been prepared starting from 1‐bromo‐2‐(1,1‐diethoxyethyl)benzenes 5 .  相似文献   

4.
A micro flow system consisting of micromixers and microtube reactors provides an effective method for the introduction of two electrophiles onto p‐, m‐, and o‐dibromobenzenes. The Br–Li exchange reaction of p‐dibromobenzene with nBuLi can be conducted by using the micro flow system at 20 °C, although much lower temperatures (p‐bromophenyllithium was allowed to react with an electrophile in the micro flow system at 20 °C. The p‐substituted bromobenzene thus obtained was subjected to a second Br–Li exchange reaction followed by reaction with a second electrophile at 20 °C in one flow. A similar transformation can be carried out with m‐dibromobenzene by using the micro flow system. However, the Br–Li exchange reaction of o‐dibromobenzene followed by reaction with an electrophile should be conducted at ?78 °C to avoid benzyne formation. The second Br–Li exchange reaction followed by reaction with an electrophile can be carried out at 0 °C. By using the present method, a variety of p‐, m‐, and o‐disubstituted benzenes were synthesized in one flow at much higher temperatures than are required for conventional batch reactions.  相似文献   

5.
Lithiated benzonitriles can be generated in high yields from reactions of bromobenzonitriles with n-BuLi in THF under standard cryogenic conditions (ca. -70 degrees C) provided the reverse addition mode is employed. The resultant aryllithiums are fairly stable at temperatures up to -60 degrees C. The formation of lithiated benzonitriles via Br/Li exchange under normal addition mode conditions is plagued by deprotonation and extensive CN-addition reactions. The generation of related aryllithiums from disilylated bromobenzonitriles is comparatively less sensitive to reaction conditions.  相似文献   

6.
A new type of isocoumarins (=1H‐isochromen‐1‐ones=1H‐2‐benzopyran‐1‐ones), 4‐substituted 3,4‐dihydro‐3‐methoxyisocoumarins 2 , can be obtained by a one‐pot process from α‐substituted 2‐bromo‐β‐methoxystyrenes 1 . Thus, lithium 2‐(1‐aryl(or methyl)‐2‐methoxyethenyl)benzoates are conveniently generated via the Br/Li exchange between 1 and BuLi, followed by the action of CO2 on the resulting α‐substituted 2‐lithio‐β‐methoxystyrenes. Upon treating with concentrated HCl at room temperature, these lithium benzoates undergo lactonization to provide the desired 3,4‐dihydroisocoumarins 2 in relatively good yields.  相似文献   

7.
Aryl and heteroaryl halides (X=Br, I) undergo a fast and convenient halogen–lanthanum exchange with nBu2LaMe, which leads to functionalized diaryl‐ and diheteroaryllanthanum derivatives. Subsequent trapping reactions with selected electrophiles, such as ketones, aldehydes, or amides, proceeded smoothly at −50 °C in THF, affording polyfunctionalized alcohols and carbonyl derivatives. Kinetic competition experiments revealed a similar reactivity trend as for Br/Mg exchange, but 106‐times higher rates, making it comparable to Br/Li exchange.  相似文献   

8.
A convenient procedure for the preparation of a new type of thiophthalides, 3‐alkoxybenzo[c]thiophen‐1(3H)‐ones 4 and 9 has been developed. Thus, 1‐(dialkoxymethyl)‐2‐lithiobenzenes, generated by Br/Li exchange between 2‐bromo‐1‐(dialkoxymethyl)benzenes 1 and 6 , and BuLi, react with isothiocyanates to afford N‐substituted 2‐(dialkoxymethyl)benzothioamides 2 and 7 , which, on treatment with a catalytic amount of TsOH?H2O, give N‐substituted 3‐alkoxybenzo[c]thiophen‐1(3H)‐imines 3 and 8 . The latter are hydrolyzed under acidic conditions to the desired products 4 and 9 , respectively.  相似文献   

9.
1‐(Trifluoromethyl)vinylation is accomplished in two protocols by the in situ generation of thermally unstable 3,3,3‐trifluoroprop‐1‐en‐2‐yllithium ( 1 ): 1) a rapid lithium–halogen‐exchange reaction of 2‐bromo‐3,3,3‐trifluoroprop‐1‐ene ( 2 ) takes effect with sec‐BuLi at ?105 °C to generate vinyllithium 1 , which reacts with more reactive electrophiles, such as aldehydes and N‐tosylimines before its decomposition, to afford 2‐(trifluoromethyl)allyl alcohols and N‐[2‐(trifluoromethyl)allyl] sulfoamides in good yield; 2) treatment of 2 with nBuLi at ?100 °C causes a slow lithium–halogen exchange of 2 , which gives rise to a mixture of 1 and nBuLi. Vinyllithium 1 is preferentially trapped with less reactive electrophiles, such as N,N‐dimethylamides in the presence of BF3?OEt2, to afford 1‐(trifluoromethyl)vinyl ketones in good yield. Versatility of the products toward syntheses of CF3‐containing ring‐fused cyclopentenones is also demonstrated by the Pauson–Khand reaction and the Nazarov cyclization.  相似文献   

10.
Substitution reactions that employ primary‐carbamoyl‐protected arylmethanethiols are described. The enantiodetermining step was found to occur in the post‐deprotonation step as a dynamic thermodynamic resolution with a chiral bis(oxazoline) ligand. The configurationally labile lithium complexes were trapped with various electrophiles to yield different substitution products in good to excellent yields and enantiomeric excesses. The absolute configurations of the substitution products were determined, and the stereochemical pathway of the substitution reaction was elucidated for different classes of electrophiles. The temperature‐dependent epimerization process was monitored by 1H and 6Li NMR spectroscopy.  相似文献   

11.
The reaction of mixtures of aryllithium regioisomers obtained either by directed lithiation or by Br/Li exchange with substoichiometric amounts of Cp2ZrCl2 proceeds with high regioselectivity. The least sterically hindered regioisomeric aryllithium is selectively transmetalated to the corresponding arylzirconium species leaving the more hindered aryllithium ready for various reactions with electrophiles. As an application, these regioselective transmetalations from Li to Zr were used to prepare all three lithiated regioisomers of 1,3‐bis(trifluoromethyl)benzene.  相似文献   

12.
The sequential addition of aromatic Grignard reagents to O‐alkyl thioformates proceeded to completion within 30 s to give aryl benzylic sulfanes in good yields. This reaction may begin with the nucleophilic attack of the Grignard reagent onto the carbon atom of the O‐alkyl thioformates, followed by the elimination of ROMgBr to generate aromatic thioaldehydes, which then react with a second molecule of the Grignard reagent at the sulfur atom to form arylsulfanyl benzylic Grignard reagents. To confirm the generation of aromatic thioaldehydes, the reaction between O‐alkyl thioformates and phenyl Grignard reagent was carried out in the presence of cyclopentadiene. As a result, hetero‐Diels–Alder adducts of the thioaldehyde and the diene were formed. The treatment of a mixture of the thioformate and phenyl Grignard reagent with iodine gave 1,2‐bis(phenylsulfanyl)‐1,2‐diphenyl ethane as a product, which indicated the formation of arylsulfanyl benzylic Grignard reagents in the reaction mixture. When electrophiles were added to the Grignard reagents that were generated in situ, four‐component coupling products, that is, O‐alkyl thioformates, two molecules of Grignard reagents, and electrophiles, were obtained in moderate‐to‐good yields. The use of silyl chloride or allylic bromides gave the adducts within 5 min, whereas the reaction with benzylic halides required more than 30 min. The addition to carbonyl compounds was complete within 1 min and the use of lithium bromide as an additive enhanced the yields of the four‐component coupling products. Finally, oxiranes and imines also participated in the coupling reaction.  相似文献   

13.
The first dimesitylboryl substitution of aryl halides with a silylborane bearing a dimesitylboryl group in the presence of alkali‐metal alkoxides is described. The reactions of aryl bromides or iodides with Ph2MeSi?BMes2 and Na(OtBu) afforded the desired aryl dimesitylboranes in good to high yields and with high borylation/silylation ratios. Selective reaction of the sterically less‐hindered C?Br bond of dibromoarenes provided monoborylated products. This reaction was used to rapidly construct a D‐π‐A aryl dimesityl borane with a non‐symmetrical biphenyl spacer.  相似文献   

14.
The use of Pd catalysts that contained a carbene ligand, such as PEPPSI-SIPr, speeded up the Murahashi coupling of ArLi with ArBr, by enabling its integration with the Br/Li exchange of ArBr with BuLi in flow. Space integration realized the rapid cross-coupling of two different ArBr substrates. However, the cross-coupling reaction with vinyl halides could not be achieved under similar conditions. Pd(OAc)2 was an effective catalyst, and the space integration of the Br/Li exchange of ArBr with BuLi and the Murahashi coupling with vinyl halides was successfully achieved.  相似文献   

15.
Addition reactions of thioamide dianions that were derived from N‐arylmethyl thioamides to imines and aziridines were carried out. The reactions of imines gave the addition products of N‐thioacyl‐1,2‐diamines in a highly diastereoselective manner in good‐to‐excellent yields. The diastereomeric purity of these N‐thioacyl‐1,2‐diamines could be enriched by simple recrystallization. The reduction of N‐thioacyl‐1,2‐diamines with LiAlH4 gave their corresponding 1,2‐diamines in moderate‐to‐good yields with retention of their stereochemistry. The oxidative‐desulfurization/cyclization of an N‐thioacyl‐1,2‐diamine in CuCl2/O2 and I2/pyridine systems gave the cyclized product in moderate yield and the trans isomer was obtained as the sole product. On the other hand, a similar cyclization reaction with antiformin (aq. NaClO) as an oxidant gave the cis isomer as the major product. The reactions of N‐tosylaziridines gave the addition products of N‐thioacyl‐1,3‐diamines with low diastereoselectivity but high regioselectivity and in good‐to‐excellent yields. The use of AlMe3 as an additive improved the efficiency and regioselectivity of the reaction. The stereochemistry of the obtained products was determined by X‐ray diffraction.  相似文献   

16.
Overall Enantioselective α-Alkylation of Aspartic and Glutamic Acid through Dilithium Enolatocarboxylates of 2- [3-Benzoyl-2-(tert-butyl)-1-methyl-5-oxoimidazolidin-4-yl]acetic and 3-[3-Benzoyl-2-(tert-butyl)-1-methyl-5-oxoimidazolidin-4-yl]propionic Acid, respectively The pure methyl esters 10 of the heterocyclic carboxylic acids specified in the title were prepared in several steps by known methods from aspartic and glutamic acid, with overall yields of ca. 20%. The corresponding heterocyclic acids 11 were doubly deprotonated by LiNEt2/BuLi or LiN(i-Pr)2/BuLi to give enolatocarboxylates ( 3 ). The latter were reacted with electrophiles (MeOD, Mel, C6H5CH2Br) to give the crystalline products 14 – 21 diastereoselectively. Hydrolysis of the imidazolidinone ring of three such products gave the corresponding α-branched aspartic and glutamic acids 22 – 24 of known absolute configuration, thus establishing the stereochemical course of the overall enantioselective alkylations.  相似文献   

17.
2‐(2′‐Bromophenyl)‐6‐butyl‐[1,3,6,2]dioxazaborocan, prepared readily by the esterification of 2‐bromophenylboronic acid with N‐butyldiethanolamine (BDEA), undergoes Br/Li exchange using BuLi/THF at ? 78 °C. A resulting intermediate proved useful in synthesis of various ortho‐functionalized arylboronic acids. Specifically, reactions with benzaldehydes provide a convenient access to 1,3‐dihydro‐1‐hydroxy‐3‐arylbenzo[c][2,1]oxaboroles that exhibit a remarkably high rotational barrier around the C? aryl bond. In addition, the molecular structure of sterically hindered 1,3‐dihydro‐1‐hydroxy‐3‐(2′, 6′‐dimethoxyphenyl)benzo[c][2,1]oxaborole is reported. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The introduction of functional groups at the 4‐position of the β‐sultam ring was realized by the synthesis of mono‐ and disubstituted derivatives by reactions of N‐silylated β‐sultams with electrophiles in the presence of BuLi or LDA. As electrophiles, ketones, chlorosilanes, a β‐sultam, CO2, chloroformiate, halogen, azodicarboxylate, phenyltriazoledione, tosyl azide, 1,3,5‐triazine, propyl nitrate, and phenyl isocyanate were used. Furthermore, a number of derivatives of these substitution products were synthesized. All products were characterized by standard spectroscopic methods, and conformations were studied, supported by calculation.  相似文献   

19.
Jo Sakurada 《Tetrahedron》2007,63(18):3806-3817
Treatment of magnesium alkylidene carbenoids, which were generated from 1-chlorovinyl p-tolyl sulfoxides with isopropylmagnesium chloride at −78 °C in toluene, with N-lithio nitrogen-containing heterocycles gave N-alkenylated products in moderate to good yields. Also, the reaction of C-lithio indoles, which were generated from N-protected indoles, with magnesium alkylidene carbenoids gave C-2 or C-3 alkenylated products, corresponding to the protective group. The intermediate of these reactions were found to be the alkenyl anion, which could be trapped with electrophiles to give the heterocycles having fully substituted alkenes.  相似文献   

20.
The title compounds have been prepared from 2‐bromophenyl isothiocyanates 1 . Thus, 2‐lithiophenyl isothiocyanates 2 , obtained from 1 and BuLi through Br/Li exchange, reacted with Se at ?78° to form lithium benzoselenazole‐2‐thiolates 3 , which, upon aqueous workup, afforded benzoselenazole‐2(3H)‐thiones 4 . The thiolates 3 were alkylated with reactive alkyl halides and acylated with carboxylic acid chlorides to give 2‐(alkylsulfanyl)benzoselenazoles 5 and S‐(benzoselenazol‐2‐yl) thiocarboxylates 6 , respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号