首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Integramide A is a 16‐amino acid peptide inhibitor of the enzyme HIV‐1 integrase. We have recently reported that the absolute stereochemistries of the dipeptide sequence near the C terminus are L ‐Iva14‐D ‐Iva15. Herein, we describe the syntheses of the natural compound and its D ‐Iva14‐L ‐Iva15 diastereomer, and the results of their chromatographic/mass spectrometric analyses. We present the conformational analysis of the two compounds and some of their synthetic intermediates of different main‐chain length in the crystal state (by X‐ray diffraction) and in solvents of different polarities (using circular dichroism, FTIR absorption, and 2D NMR techniques). These data shed light on the mechanism of inhibition of HIV‐1 integrase, which is an important target for anti‐HIV therapy.  相似文献   

2.
Achiral compounds 4‐methoxy‐4‐(p‐methoxyphenyl)cyclohexanoneethylene ketal ( 2 ), 4‐hydroxy‐4‐(p‐methoxy phenyl)cyclohexanoneethylene ketal ( 3 ), and 3,5‐dimethyl‐4‐nitropyrazole ( 4 ) crystallized in chiral structures and the samples showed an enantiomeric excess. We have determined the absolute structures of these compounds by using X‐ray diffraction with copper radiation at low temperatures. Moreover, we have also established the prevalent absolute structures in these samples, by comparing their calculated and solid‐state vibrational circular dichroism (VCD) spectra. The consistency of this method was confirmed by using (R,R)‐2,8‐diiodo‐4,10‐dimethyl‐6 H,12H‐5,11‐methano‐dibenzo[b,f][1,5]diazocine, Tröger′s base, (R,R)‐ 1 , as a chiral compound of known absolute configuration.  相似文献   

3.
Electrochemically grown cobalt on graphene exhibits exceptional performance as a catalyst for the oxygen evolution reaction (OER) and provides the possibility of controlling the morphology and the chemical properties during deposition. However, the detailed atomic structure of this hybrid material is not well understood. To elucidate the Co/graphene electronic structure, we have developed a flow cell closed by a graphene membrane that provides electronic and chemical information on the active surfaces under atmospheric pressure and in the presence of liquids by means of X‐ray photoelectron spectroscopy (XPS). We found that cobalt is anchored on graphene via carbonyl‐like species, namely Co(CO)x, promoting the reduction of Co3+ to Co2+, which is believed to be the active site of the catalyst.  相似文献   

4.
Its importance for life and its unusual properties keep water within the focus of ongoing research; this focus especially applies to water in the liquid phase. Scientists agree that the hydrogen‐bond network, which is formed by interactions between the water molecules, is key for understanding the anomalies of water. However, a better understanding of the structure of this network, as well as its dynamics, must yet be established. Soft X‐ray spectroscopy allows the investigation of the local electronic structure of water by probing the occupied and unoccupied valence molecular orbitals. In this Focus Review, we present soft‐X‐ray‐based techniques, their development in terms of liquid spectroscopy, and recent studies on the hydrogen‐bond network of liquid water.  相似文献   

5.
A scheme is presented in which an organic solvent environment in combination with surfactants is used to confine a natively unfolded protein inside an inverse microemulsion droplet. This type of confinement allows a study that provides unique insight into the dynamic structure of an unfolded, flexible protein which is still solvated and thus under near‐physiological conditions. In a model system, the protein osteopontin (OPN) is used. It is a highly phosphorylated glycoprotein that is expressed in a wide range of cells and tissues for which limited structural analysis exists due to the high degree of flexibility and large number of post‐translational modifications. OPN is implicated in tissue functions, such as inflammation and mineralisation. It also has a key function in tumour metastasis and progression. Circular dichroism measurements show that confinement enhances the secondary structural features of the protein. Small‐angle X‐ray scattering and dynamic light scattering show that OPN changes from being a flexible protein in aqueous solution to adopting a less flexible and more compact structure inside the microemulsion droplets. This novel approach for confining proteins while they are still hydrated may aid in studying the structure of a wide range of natively unfolded proteins.  相似文献   

6.
7.
Solid solution phases Li7‐2xMgx[VN4] (0 < x ≤ 1) with varying Mg‐content are obtained as yellow microcrystalline powders from heat treatment of mixtures of VN, Li3N and Mg3N2 or from mixtures of Li7[VN4] and Mg3N2 at 1370 K in N2 atmosphere at ambient pressure. At substitution parameter values of x > 0.5 a subsequent distortion from the ideal cubic unit cell to an orthorhombic unit cell is observed. The crystal structure of Li7‐2xMgx[VN4] with x ≈ 1 was refined from neutron and X‐ray powder diffraction data (space group Pbca, No. 61, a = 963.03(3) pm, b = 958.44(3) pm, c = 951.93(2) pm, neutron pattern 14° — 156° 2θ, step non‐linear ≈ 0.0782° 2θ, No. of measured points 1816, Rp = 0.089, Rwp = 0.115, RBragg = 0.155, RF = 0.114; X‐ray pattern 10° — 98° 2θ, step 0.005° 2θ, No. of measured points 17600, Rp = 0.028, Rwp = 0.045, RBragg = 0.113, RF = 0.133, structure variables: 45). The crystal structure resembles a Li2O type superstructure with the atomic arrangement of β‐Li7[VN4] and with two crystallographic Li‐sites each substituted by Mg with statistical occupation factors of 0.5. Chemical analyses prove the composition and XAS spectroscopy at the V K‐edge support the +5 oxidation state assignment for vanadium. XAS data also support the tetrahedral coordination of vanadium by N as indicated by the structure refinements.  相似文献   

8.
9.
10.
X-ray magnetic circular dichroism (XMCD) experiments on diluted magnetic semiconductor nanocrystals were carried out to study the local electronic structure and magnetic properties of Mn(2+) embedded in the lattice of ZnSe nanoparticles. It is shown that Mn(2+) is exclusively present in the bulk of ZnSe nanoparticles. Neither Mn-Mn coupling nor traces of oxidation to higher Mn oxidation states was observed. This result, which is consistent with EPR spectroscopic data, provides clear proof of the location of Mn(2+) in semiconductor nanoparticles. Further, it is shown that the magnetic ions are highly polarised inside the nanocrystals, where they reach about 50 % of the theoretical value of a pure d(5) state under identical conditions.  相似文献   

11.
Two iron–nitrosyl–porphyrins, nitrosyl[meso‐tetrakis(3,4,5‐trimethoxyphenylporphyrin]iron(II) acetic acid solvate ( 3 ) and nitrosyl[meso‐tetrakis(4‐methoxyphenylporphyrin]iron(II) CH2Cl2 solvate ( 4 ), were synthesized in quantitative yield by using a modified procedure with nitrous acid, followed by oxygen‐atom abstraction by triphenylphosphine under an argon atmosphere. These nitrosyl porphyrins are in the {FeNO}7 class. Under an argon atmosphere, these compounds are relatively stable over a broad range of pH values (4–8) but, under aerobic conditions, they release nitric oxide faster at high pH values than that at low pH values. The generated nitric‐oxide‐free iron(III)–porphyrin can be re‐nitrosylated by using nitrous acid and triphenylphosphine. The rapid release of NO from these FeII complexes at high pH values seems to be similar to that in nitrophorin, a nitric‐oxide‐transport protein, which formally possesses FeIII. However, because the release of NO occurs from ferrous–nitrosyl–porphyrin under aerobic conditions, these compounds are more closely related to nitrobindin, a recently discovered heme protein.  相似文献   

12.
The reaction of [Cp*Ir(bzpy)NO3] ( 1 ; bzpy=2‐benzoylpyridine, Cp*=pentamethylcyclopentadienyl anion), a competent water‐oxidation catalyst, with several oxidants (H2O2, NaIO4, cerium ammonium nitrate (CAN)) was studied to intercept and characterize possible intermediates of the oxidative transformation. NMR spectroscopy and ESI‐MS techniques provided evidence for the formation of many species that all had the intact Ir–bzpy moiety and a gradually more oxidized Cp* ligand. Initially, an oxygen atom is trapped in between two carbon atoms of Cp* and iridium, which gives an oxygen–Ir coordinated epoxide, whereas the remaining three carbon atoms of Cp* are involved in a η3 interaction with iridium ( 2 a ). Formal addition of H2O to 2 a or H2O2 to 1 leads to 2 b , in which a double MeCOH functionalization of Cp* is present with one MeCOH engaged in an interaction with iridium. The structure of 2 b was unambiguously determined in the solid state and in solution by X‐ray single‐crystal diffractometry and advanced NMR spectroscopic techniques, respectively. Further oxidation led to the opening of Cp* and transformation of the diol into a diketone with one carbonyl coordinated at the metal ( 2 c ). A η3 interaction between the three non‐oxygenated carbons of “ex‐Cp*” and iridium is also present in both 2 b and 2 c . Isolated 2 b and mixtures of 2 a – c species were tested in water‐oxidation catalysis by using CAN as sacrificial oxidant. They showed substantially the same activity than 1 (turnover frequency values ranged from 9 to 14 min?1).  相似文献   

13.
By studying the thermal condensation of melamine, we have identified three solid molecular adducts consisting of melamine C3N3(NH2)3 and melem C6N7(NH2)3 in differing molar ratios. We solved the crystal structure of 2 C3N3(NH2)3?C6N7(NH2)3 ( 1 ; C2/c; a=21.526(4), b=12.595(3), c=6.8483(14) Å; β=94.80(3)°; Z=4; V=1850.2(7) Å3), C3N3(NH2)3?C6N7(NH2)3 ( 2 ; Pcca; a=7.3280(2), b=7.4842(2), c=24.9167(8) Å; Z=4; V=1366.54(7) Å3), and C3N3(NH2)3?3 C6N7(NH2)3 ( 3 ; C2/c; a=14.370(3), b=25.809(5), c=8.1560(16) Å; β=94.62(3)°; Z=4; V=3015.0(10) Å3) by using single‐crystal XRD. All syntheses were carried out in sealed glass ampoules starting from melamine. By variation of the reaction conditions in terms of temperature, pressure, and the presence of ammonia‐binding metals (europium) we gained a detailed insight into the occurrence of the three adduct phases during the thermal condensation process of melamine leading to melem. A rational bulk synthesis allowed us to realize adduct phases as well as phase separation into melamine and melem under equilibrium conditions. A solid‐state NMR spectroscopic investigation of adduct 1 was conducted.  相似文献   

14.
The crystal structure of Cs2BaTa6Br15O3 has been elucidated by using synchrotron X‐ray powder diffraction and absorption experiments. It is built from edge‐bridged octahedral [(Ta6${{\rm Br}{{{\rm i}\hfill \atop 9\hfill}}}$ ${{\rm O}{{{\rm i}\hfill \atop 3\hfill}}}$ )${{\rm Br}{{{\rm a}\hfill \atop 6\hfill}}}$ ]4? cluster units with a singular poor metallic electron (ME) count equal to thirteen. This leads to a paramagnetic behaviour related to one unpaired electron. The arrangement of the Ta6 clusters is similar to that of Cs2LaTa6Br15O3 exhibiting 14‐MEs per [(Ta6${{\rm Br}{{{\rm i}\hfill \atop 9\hfill}}}$ ${{\rm O}{{{\rm i}\hfill \atop 3\hfill}}}$ )${{\rm Br}{{{\rm a}\hfill \atop 6\hfill}}}$ ]5? motif. The poorer electron‐count cluster presents longer metal–metal distances as foreseen according to the electronic structure of edge‐bridged hexanuclear cluster. Density functional theory (DFT) calculations on molecular models were used to rationalise the structural properties of 13‐ and 14‐ME clusters. Periodic DFT calculations demonstrate that the electronic structure of these solid‐state compounds is related to those of the discrete octahedral units. Oxygen–barium interactions seem to prevent the geometry of the octahedral cluster to strongly distort, allowing stabilisation of this unprecedented electron‐poor Ta6 cluster in the solid state.  相似文献   

15.
The deposition of Mn(12) single molecule magnets on gold surfaces was studied for the first time using combined X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) methods at low temperature. The ability of the proposed approach to probe the electronic structure and magnetism of Mn(12) complexes without significant sample damage was successfully checked on bulk samples. Detailed information on the oxidation state and magnetic polarization of manganese ions in the adsorbates was obtained from XAS and XMCD spectra, respectively. Partial reduction of metal ions to Mn(II) was clearly observed upon deposition on Au(111) of two different Mn(12) derivatives bearing 16-acetylthio-hexadecanoate and 4-(methylthio)benzoate ligands. The average oxidation state, as well as the relative proportions of Mn(II), Mn(III) and Mn(IV) species, are strongly influenced by the deposition protocol. Furthermore, the local magnetic polarizations are significantly decreased as compared with bulk Mn(12) samples. The results highlight an utmost redox instability of Mn(12) complexes at gold surfaces, presumably accompanied by structural rearrangements, which cannot be easily revealed by standard surface analysis based on X-ray photoelectron spectroscopy and scanning tunnelling microscopy.  相似文献   

16.
An intercalated polyurethane (PU) /clay nanocomposite was prepared by in situ intercalative polymerization. The PU/clay nanocomposite pellet or film samples were stretched‐recovery‐restretched, using selfmade microstretching tools. The changes of the basal spacings of clay and the orientation of polymer chain segments during the stretched‐recovery‐restretched process were studied by wide angle X‐ray diffraction (WAXD) and Fourier transform infrared (FTIR) dichoism techniques. The WAXD results show that the basal spacing of clay did not change obviously, indicating that no macromolecular chains entered or moved out of the interlayer space, and the orientations of both hard and soft segments inside the interlayer space did not change obviously, either. The FTIR dichroism tests suggest that outside the interlayer space, the orientation of the hard chain segment increased, decreased, and then increased again during the stretched‐recovery‐restretched process. However, no obvious changes of the degree of orientation of the soft segment were observed during the processes, the slightly orientation might be released during the relaxation process before the measurements. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 654–660, 2007  相似文献   

17.
18.
19.
The structures of two types of guanidine–quinoline copper complexes have been investigated by single‐crystal X‐ray crystallography, K‐edge X‐ray absorption spectroscopy (XAS), resonance Raman and UV/Vis spectroscopy, cyclic voltammetry, and density functional theory (DFT). Independent of the oxidation state, the two structures, which are virtually identical for solids and complexes in solution, resemble each other strongly and are connected by a reversible electron transfer at 0.33 V. By resonant excitation of the two entatic copper complexes, the transition state of the electron transfer is accessible through vibrational modes, which are coupled to metal–ligand charge transfer (MLCT) and ligand–metal charge transfer (LMCT) states.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号