首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Substitution of bipyridine for a nucleobase leads to modified peptide nucleic acid (PNA) single strands that are bridged in the presence of Ni2+ into a duplex containing a combination of hydrogen and coordinative bonds. CD experiments demonstrate that the duplex adopts a structure similar to that of an unmodified 10-bp PNA duplex, and UV melting experiments show a very sensitive dependence of the duplex stability on the substitution of a nucleobase pair with a pair of ligands or a metal-ligand alternative base pair.  相似文献   

2.
Substitution of natural nucleobases in PNA oligomers with ligands is a strategy for directing metal ion incorporation to specific locations within a PNA duplex. In this study, we have synthesized PNA oligomers that contain up to three adjacent bipyridine ligands and examined the interaction with Ni2+ and Cu2+ of these oligomers and of duplexes formed from them. Variable-temperature UV spectroscopy showed that duplexes containing one terminal pair of bipyridine ligands are more stable upon metal binding than their nonmodified counterparts. While binding of one metal ion to duplexes that contain two adjacent bipyridine pairs makes the duplexes more stable, additional metal ions lower the duplex stability, with electrostatic repulsions being, most likely, an important contributor to the destabilization. UV titrations showed that the presence of several bipyridine ligands in close proximity of each other in PNA oligomers exerts a chelate effect. A supramolecular chelate effect occurs when several bipyridines are brought next to each other by hybridization of PNA duplexes. EPR spectroscopy studies indicate that even when two Cu2+ ions coordinate to a PNA duplex in which two bipyridine pairs are next to each other, the two metal-ligand complexes that form in the duplex are far enough from each other that the dipolar coupling is very weak. EXAFS and XANES show that the Ni2+-bipyridine bond lengths are typical for [Ni(bipy)2]2+ and [Ni(bipy)3]2+ complexes.  相似文献   

3.
The stabilities of duplexes formed by strands of novel artificial nucleic acids composed of acyclic threoninol nucleic acid (aTNA) and serinol nucleic acid (SNA) building blocks were compared with duplexes formed by the acyclic glycol nucleic acid (GNA), peptide nucleic acid (PNA), and native DNA and RNA. All acyclic nucleic acid homoduplexes examined in this study had significantly higher thermal stability than DNA and RNA duplexes. Melting temperatures of homoduplexes were in the order of aTNA>PNA≈GNA≥SNA?RNA>DNA. Thermodynamic analyses revealed that high stabilities of duplexes formed by aTNA and SNA were due to large enthalpy changes upon formation of duplexes compared with DNA and RNA duplexes. The higher stability of the aTNA homoduplex than the SNA duplex was attributed to the less flexible backbone due to the methyl group of D ‐threoninol on aTNA, which induced clockwise winding. Unlike aTNA, the more flexible SNA was able to cross‐hybridize with RNA and DNA. Similarly, the SNA/PNA heteroduplex was more stable than the aTNA/PNA duplex. A 15‐mer SNA/RNA was more stable than an RNA/DNA duplex of the same sequence.  相似文献   

4.
Peptide nucleic acid (PNA) is a synthetic analogue of DNA, which has the same nucleobases as DNA but typically has a backbone based on aminoethyl glycine (Aeg). PNA forms duplexes by Watson Crick hybridization. The Aeg-based PNA duplexes adopt a chiral helical structure but do not have a preferred handedness because they do not contain a chiral center. An L-lysine situated at the C-end of one or both strands of a PNA duplex causes the duplex to preferably adopt a left-handed structure. We have introduced into the PNA duplexes both a C-terminal L-lysine and one or two PNA monomers that have a γ-(S)-methyl-aminoethyl glycine backbone, which is known to induce a preference for a right-handed structure. Indeed, we found that in these duplexes the γ-methyl monomer exerts the dominant chiral induction effect causing the duplexes to adopt a right-handed structure. The chiral PNA monomer had a 2,2':6',2'-terpyridine (Tpy) ligand instead of a nucleobase and PNA duplexes that contained one or two Tpys formed [Cu(Tpy)(2)](2+) complexes in the presence of Cu(2+). The CD spectroscopy studies showed that these metal-coordinated duplexes were right-handed due to the chiral induction effect exerted by the S-Tpy PNA monomer(s) except for the cases when the [Cu(Tpy)(2)](2+) complex was formed with Tpy ligands from two different PNA duplexes. In the latter case, the metal complex bridged the two PNA duplexes and the duplexes were left-handed. The results of this study show that the preferred handedness of a ligand-modified PNA can be switched as a consequence of metal coordination to the ligand. This finding could be used as a tool in the design of functional nucleic-acid based nanostructures.  相似文献   

5.
A novel bifacial ligand‐bearing nucleobase, 5‐hydroxyuracil ( UOH ), which forms both a hydrogen‐bonded base pair ( UOH –A) and a metal‐mediated base pair ( UOH –M– UOH ) has been developed. The UOH –M– UOH base pairs were quantitatively formed in the presence of lanthanide ions such as GdIII when UOH – UOH pairs were consecutively incorporated into DNA duplexes. This result established metal‐assisted duplex stabilization as well as DNA‐templated assembly of lanthanide ions. Notably, a duplex possessing UOH –A base pairs was destabilized by addition of GdIII ions. This observation suggests that the hybridization behaviors of the UOH ‐containing DNA strands are altered by metal complexation. Thus, the UOH nucleobase with a bifacial base‐pairing property holds great promise as a component for metal‐responsive DNA materials.  相似文献   

6.
Gold‐surface grafted peptide nucleic acid (PNA) strands, which carry a redox‐active ferrocene tag, present unique tools to electrochemically investigate their mechanical bending elasticity based on the kinetics of electron‐transfer (ET) processes. A comparative study of the mechanical bending properties and the thermodynamic stability of a series of 12‐mer Fc‐PNA?DNA duplexes was carried out. A single basepair mismatch was integrated at all possible strand positions to provide nanoscopic insights into the physicochemical changes provoked by the presence of a single basepair mismatch with regard to its position within the strand. The ET processes at single mismatch Fc‐PNA?DNA modified surfaces were found to proceed with increasing diffusion limitation and decreasing standard ET rate constants k0 when the single basepair mismatch was dislocated along the strand towards its free‐dangling Fc‐modified end. The observed ET characteristics are considered to be due to a punctual increase in the strand elasticity at the mismatch position. The kinetic mismatch discrimination with respect to the fully‐complementary duplex presents a basis for an electrochemical DNA sensing strategy based on the Fc‐PNA?DNA bending dynamics for loosely packed monolayers. In a general sense, the strand elasticity presents a further physicochemical property which is affected by a single basepair mismatch which may possibly be used as a basis for future DNA sensing concepts for the specific detection of single basepair mismatches.  相似文献   

7.
A GNA (glycol nucleic acid) functionalized nucleoside analogue containing the artificial nucleobase 1H‐imidazo[4,5‐f][1,10]phenanthroline (P) was used to form a copper(I)‐mediated base pair within a DNA duplex. The geometrical constraints imposed by the artificial nucleobase play a pivotal role in this unprecedented stabilization of copper(I) in aqueous medium via metal‐mediated base pairing. The formation of the copper(I)‐mediated base pair was investigated by temperature‐dependent UV spectroscopy and CD spectroscopy. The metal‐mediated base pair stabilizes the DNA oligonucleotide duplex by 23 °C. A redox chemistry approach confirmed that this base pair formation was due to the incorporation of copper(I) into the duplex. This first report of a copper(I)‐mediated base pair adds metal‐based diversity to the field and consequently opens up the range of possible applications of metal‐modified nucleic acids.  相似文献   

8.
Metallo‐base pairs have been extensively studied for applications in nucleic acid‐based nanodevices and genetic code expansion. Metallo‐base pairs composed of natural nucleobases are attractive because nanodevices containing natural metallo‐base pairs can be easily prepared from commercially available sources. Previously, we have reported a crystal structure of a DNA duplex containing T? HgII? T base pairs. Herein, we have determined a high‐resolution crystal structure of the second natural metallo‐base pair between pyrimidine bases C? AgI? C formed in an RNA duplex. One AgI occupies the center between two cytosines and forms a C? AgI? C base pair through N3? AgI? N3 linear coordination. The C? AgI? C base pair formation does not disturb the standard A‐form conformation of RNA. Since the C? AgI? C base pair is structurally similar to the canonical Watson–Crick base pairs, it can be a useful building block for structure‐based design and fabrication of nucleic acid‐based nanodevices.  相似文献   

9.
Syntheses are described for two novel twisted intercalating nucleic acid (TINA) monomers where the intercalator comprises a benzene ring linked to a naphthalimide moiety via an ethynediyl bridge. The intercalators Y and Z have a 2‐(dimethylamino)ethyl and a methyl residue on the naphthalimide moiety, respectively. When used as triplex‐forming oligonucleotides (TFOs), the novel naphthalimide TINAs show extraordinary high thermal stability in Hoogsteen‐type triplexes and duplexes with high discrimination of mismatch strands. DNA Strands containing the intercalator Y show higher thermal triplex stability than DNA strands containing the intercalator Z . This observation can be explained by the ionic interaction of the protonated dimethylamino group under physiological conditions, targeting the negatively charged phosphate backbone of the duplex. This interaction leads to an extra binding mode between the TFO and the duplex, in agreement with molecular‐modeling studies. We believe that this is the first example of an intercalator linking the TFO to the phosphate backbone of the duplex by an ionic interaction, which is a promising tool to achieve a higher triplex stability.  相似文献   

10.
We present evidence for a near-resonant mechanism of charge transfer in short peptide nucleic acid (PNA) duplexes obtained through electrochemical, STM break junction (STM-BJ), and computational studies. A seven base pair (7-bp) PNA duplex with the sequence (TA)(3)-(XY)-(TA)(3) was studied, in which XY is a complementary nucleobase pair. The experiments showed that the heterogeneous charge transfer rate constant (k(0)) and the single-molecule conductance (σ) correlate with the oxidation potential of the purine base in the XY base pair. The electrochemical measurements showed that the enhancement of k(0) is independent, within experimental error, of which of the two PNA strands contains the purine base of the XY base pair. 7-bp PNA duplexes with one or two GC base pairs had similar measured k(0) and conductance values. While a simple superexchange model, previously used to rationalize charge transfer in single stranded PNA (Paul et al. J. Am. Chem. Soc. 2009, 131, 6498-6507), describes some of the experimental observations, the model does not explain the absence of an enhancement in the experimental k(0) and σ upon increasing the G content in the duplexes from one to two. Moreover, the superexchange model is not consistent with other studies (Paul et al. J. Phys. Chem. B 2010, 114, 14140), that showed a hopping charge transport mechanism is likely important for PNA duplexes longer than seven base pairs. A quantitative computational analysis shows that a near-resonant charge transfer regime, wherein a mix of superexchange and hopping mechanisms are expected to coexist, can rationalize all of the experimental results.  相似文献   

11.
The (3′→2′)‐phosphodiester glyceric acid backbone containing an acyclic oligomer tagged with 2,4‐disubstituted pyrimidines as alternative recognition elements have been synthesized. Strong cross‐pairing of a 2,4‐dioxo‐5‐aminopyrimidine hexamer, rivaling locked nucleic acid (LNA) and peptide nucleic acid (PNA), with complementary adenine‐containing DNA and RNA sequences was observed. The corresponding 2,4‐diamino‐ and 2‐amino‐4‐oxo‐5‐aminopyrimidine‐tagged oligomers were synthesized, but difficulties in deprotection, purification, and isolation thwarted further investigations. The acyclic phosphate backbone structure of the protected oligomer seems to be prone to an eliminative degradation owing to the acidic hydrogen at the 2′‐position—an arrangement that renders the oligomer vulnerable to the conditions used for the removal of the protecting groups on the heterocyclic recognition element. However, the free oligomers seem to be stable under the conditions investigated.  相似文献   

12.
8‐Phenylimidazolo‐dC (phImidC, 2 ) forms metal‐mediated DNA base pairs by entrapping two silver ions. To this end, the fluorescent “purine” 2′‐deoxyribonucleoside 2 has been synthesised and converted into the phosphoramidite 6 . Owing to the ease of nucleobase deprotonation, the new Ag+‐mediated base pair containing a “purine” skeleton is much stronger than that derived from the pyrrolo‐ [3,4‐d]pyrimidine system (phPyrdC, 1 ). The silver‐mediated phImidC–phImidC base pair fits well into the DNA double helix and has the stability of a covalent cross‐link. The formation of such artificial metal base pairs might not be limited to DNA but may be applicable to other nucleic acids such as RNA, PNA and GNA as well as other biopolymers.  相似文献   

13.
The X-ray structure of a partly self-complementary peptide nucleic acid (PNA) decamer (H-GTAGATCACT-l-Lys-NH(2)) to 2.60 A resolution is reported. The structure is mainly controlled by the canonical Watson-Crick base pairs formed by the self-complementary stretch of four bases in the middle of the decamer (G(4)A(5)T(6)C(7)). One right- and one left-handed Watson-Crick duplex are formed. The two PNA units C(9)T(10) change helical handedness, so that each PNA strand contains both a right- and a left-handed section. The changed handedness in C(9)T(10) allows formation of Hoogsteen hydrogen bonding between C(9)T(10) and G(4)A(5) of a PNA strand in an adjacent Watson-Crick double helix of the same handedness. Thereby, a PNA-PNA-PNA triplex is formed. The PNA unit A(3) forms a noncanonical base pair with A(8) in a symmetry-related strand of opposite handedness; the base pair is of the A-A reverse Hoogsteen type. The structural diversity of this PNA demonstrates how the PNA backbone is able to adapt to structures governed by the stacking and hydrogen-bonding interactions between the nucleobases. The crystal structure further shows how PNA oligomers containing limited sequence complementarity may form complex hydrogen-bonding networks.  相似文献   

14.
The structure of the hexitol nucleic acid (HNA) h(GCGCTTTTGCGC) was determined by NMR spectroscopy. This unnatural nucleic acid was developed as a mimic for A‐RNA. In solution, the studied sequence is forming a symmetric double‐stranded structure with four central consecutive T⋅T wobble pairs flanked by G⋅C Watson‐Crick base pairs. The stem regions adopt an A‐type helical structure. Discrete changes in backbone angles are altering the course of the helix axis in the internal loop region. Two H‐bonds are formed in each wobble pair, and base stacking is preserved in the duplex, explaining the stability of the duplex. This structure elucidation provides information about the influence of a (T)4 fragment on local helix geometries as well as on the nature of the T⋅T mismatch base pairing in a TTTT tract.  相似文献   

15.
The first parallel‐stranded DNA duplex with Hoogsteen base pairing that readily incorporates an Ag+ ion into an internal mispair to form a metal‐mediated base pair has been created. Towards this end, the highly stabilizing 6 FP ‐Ag+‐ 6 FP base pair comprising the artificial nucleobase 6‐furylpurine ( 6 FP ) was devised. A combination of temperature‐dependent UV spectroscopy, CD spectroscopy, and DFT calculations was used to confirm the formation of this base pair. The nucleobase 6 FP is capable of forming metal‐mediated base pairs both by the Watson–Crick edge (i.e. in regular antiparallel‐stranded DNA) and by the Hoogsteen edge (i.e. in parallel‐stranded DNA), depending on the oligonucleotide sequence and the experimental conditions. The 6 FP ‐Ag+‐ 6 FP base pair within parallel‐stranded DNA is the most strongly stabilizing Ag+‐mediated base pair reported to date for any type of nucleic acid, with an increase in melting temperature of almost 15 °C upon the binding of one Ag+ ion.  相似文献   

16.
The metallo DNA duplex containing mercury‐mediated T–T base pairs is an attractive biomacromolecular nanomaterial which can be applied to nanodevices such as ion sensors. Reported herein is the first crystal structure of a B‐form DNA duplex containing two consecutive T–HgII–T base pairs. The HgII ion occupies the center between two T residues. The N3‐HgII bond distance is 2.0 Å. The relatively short HgII‐HgII distance (3.3 Å) observed in consecutive T–HgII–T base pairs suggests that the metallophilic attraction could exist between them and may stabilize the B‐form double helix. To support this, the DNA duplex is largely distorted and adopts an unusual nonhelical conformation in the absence of HgII. The structure of the metallo DNA duplex itself and the HgII‐induced structural switching from the nonhelical form to the B‐form provide the basis for structure‐based design of metal‐conjugated nucleic acid nanomaterials.  相似文献   

17.
The synthesis and evaluation of a series of novel nucleobases based on substituted 1,8-naphthyridin-2(1H)-ones are reported. The nucleobases were designed to meet the requirements for incorporation into peptide nucleic acids (PNAs) and were evaluated as part of PNA duplex and triplex nucleic acid recognition systems. Of the various nucleobases tested, only the 7-chloro-1,8-naphthyridin-2(1H)-one (7-Cl-bT) nucleobase led to consistently increased affinity in all recognition systems, duplex (Watson-Crick) as well as triplex (Hoogsteen). For multiply modified systems, the increase in thermal stability per modification was dependent on the sequence context, ranging from 2.0 degrees C (in separate positions) to 3.5 degrees C (in adjacent positions) in PNA-DNA duplexes and from 1.2 degrees C (in separate positions) to 3.2 degrees C (in adjacent positions) in PNA-RNA duplexes. Singly mismatched oligonucleotide targets were employed to demonstrate uncompromised sequence discrimination. When part of multiply modified triplex (Hoogsteen) recognition systems, the 7-Cl-bT unit gave rise to increases in the thermal stability ranging from 2.7 to 3.5 degrees C when incorporated into separated and adjacent positions, respectively. Our results furthermore indicate that the duplex stabilization is predominantly enthalpic and therefore most likely not a consequence of single-strand preorganization. Finally, and most surprisingly, we find no direct correlation between the end-stacking efficiency of this type of nucleobase and its helix stabilization when involved in Watson-Crick base pairing within a helix.  相似文献   

18.
The substitution of nucleobases in nucleic acid duplexes with ligands that have high affinity for transition metal ions creates metal-binding sites at specific locations within the duplexes. Several studies on the incorporation of metal ions into DNA and peptide nucleic acid (PNA) duplexes have suggested that the stability constant of the metal complex formed within the duplexes is a primary determinant of the thermal stability of the duplexes. To understand this relationship, we have synthesized two PNA monomers that carry the same ligand, namely 8-hydroxyquinoline, but have this ligand attached differently to the PNA backbone. The PNA monomers have been incorporated into PNA duplexes. UV and CD spectroscopy and calorimetric studies of the 8-hydroxyquinoline-PNA duplexes showed that the effect of the stability of the metal complex on the PNA duplexes was significantly modulated by the steric relationship between the complex and the duplex. This information is useful for the construction of hybrid inorganic-nucleic acid nanostructures.  相似文献   

19.
Coupling of nonnatural nucleobases to the orthogonally protected backbone 1 on the solid phase provided access to novel peptide nucleic acid (PNA) conjugates 2 , which are difficult to synthesize by standard routes. Hybridization probes containing the thiazolorange dye might allow DNA sequence analysis in real time. B−CH2CO=modified nucleobase, fluorescent dye, etc; Boc, Fmoc=protecting groups.  相似文献   

20.
Serinol nucleic acid (SNA) is a promising candidate for nucleic acid‐based molecular probes and drugs due to its high affinity for RNA. Our previous work revealed that incorporation of 2,6‐diaminpurine (D), which can form three hydrogen bonds with uracil, into SNA increases the melting temperature of SNA‐RNA duplexes. However, D incorporation into short self‐complementary regions of SNA promoted self‐dimerization and hindered hybridization with RNA. Here we synthesized a SNA monomer of 2‐thiouracil (sU), which was expected to inhibit base pairing with D by steric hindrance between sulfur and the amino group. To prepare the SNA containing D and sU in high yield, we customized the protecting groups on D and sU monomers that can be readily deprotected under acidic conditions. Incorporation of D and sU into SNA facilitated stable duplex formation with target RNA by suppressing the self‐hybridization of SNA and increasing the stability of the heteroduplex of SNA and its complementary RNA. Our results have important implications for the development of SNA‐based probes and nucleic acid drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号