首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Over the last few years, gold‐catalyzed reactions that involved chirality transfer and memory of chirality (MOC) have emerged as a powerful tool in enantioselective synthesis. This technique has allowed for the single‐step synthesis of enantioenriched compounds from readily available starting materials. This Focus Review discusses this emerging field with an emphasis on mechanistic aspects and their applications in synthetic organic chemistry.  相似文献   

2.
The carbon‐carbon and carbon‐heteroatom bond formation reactions are considered as a fundamental tool in synthetic organic chemistry. They have been effectively utilized in the synthesis of medicinally significant molecules, agrochemicals and valuable compounds in material sciences. This has been primarily enabled by highly efficient protocols arising from divergent mechanistic pathways. In this personal account, we aim to discuss some recent advances in carbon‐carbon or carbon‐heteroatom bond formation reactions to which our group has actively contributed. More specifically, this record focuses on the use of unsaturated carbon compounds for the construction of C?C and C?X bonds.  相似文献   

3.
The synthetic utility of alkyl‐onium salt compounds is widely recognized in the field of organic chemistry. Among the wide variety of onium salts, quaternary ammonium, phosphonium, and tertiary sulfonium salts have been the most useful compounds in organic syntheses. These compounds have been very useful reagents in the construction of organic building blocks. In addition, onium salts are known as reliable catalysts, which are used to promote important organic transformations by serving as phase‐transfer and ion‐pair catalysts through the activation of nucleophiles. Although phase‐transfer catalysis is a major direction for onium salt catalysis, hydrogen‐bonding catalysis of alkyl‐onium salts, which is promoted via the activation of electrophiles, has recently become a relevant topic in the field of onium salt chemistry. This Minireview introduces new possibilities and future directions for alkyl‐onium salt chemistry based on its use in hydrogen‐bonding catalysis and on its overall utility.  相似文献   

4.
Quinones are important organic oxidants in a variety of synthetic and biological contexts, and they are susceptible to activation towards electron transfer through hydrogen bonding. Whereas this effect of hydrogen bond donors (HBDs) has been observed for Lewis basic, weakly oxidizing quinones, comparable activation is not readily achieved when more reactive and synthetically useful electron‐deficient quinones are used. We have successfully employed HBD‐coupled electron transfer as a strategy to activate electron‐deficient quinones. A systematic investigation of HBDs has led to the discovery that certain dicationic HBDs have an exceptionally large effect on the rate and thermodynamics of electron transfer. We further demonstrate that these HBDs can be used as catalysts in a quinone‐mediated model synthetic transformation.  相似文献   

5.
Multicomponent reactions are attractive for assembling functionalized heterocyclic compounds. To this end, an efficient gold‐catalyzed three‐component domino reaction to form oxazoles directly from imines, alkynes, and acid chlorides is presented. The reaction proceeds in a single synthetic step by using a gold(III)–N,N′‐ethylenebis(salicylimine) (salen) catalyst to give trisubstituted oxazoles in up to 96 % yield. The substrate scope, a mechanistic study exploring the role of the gold catalyst, and the synthetic applications of the oxazole products are discussed.  相似文献   

6.
A full account of a recently discovered gold(I)‐catalyzed reaction, a cycloaddition of carbonyl compounds to enynes yielding 2‐oxabicyclo[3.1.0]hexanes with four stereogenic centers, is presented. The reaction proceeds with very high diastereoselectivity. The scope of the reaction has been investigated. In addition, experiments and DFT calculations concerning mechanistic aspects were carried out. The reaction course varies with the substitution pattern of the alkene moiety of the starting enyne. Branched olefins led to 2‐oxabicyclo[3.1.0]hexanes; terminally substituted olefins proceeded with the incorporation of two carbonyl components to give hexahydrocyclopenta[d][1,3]dioxines.  相似文献   

7.
Ligand‐stabilized copper(I)–hydride catalyzes the dehydrogenative Si–O coupling of alcohols and silanes—a process that was found to proceed without racemization at the silicon atom if asymmetrically substituted. The present investigation starts from this pivotal observation since silicon‐stereogenic silanes are thereby suitable for the reagent‐controlled kinetic resolution of racemic alcohols, in which asymmetry at the silicon atom enables discrimination of enantiomeric alcohols. In this full account, we summarize our efforts to systematically examine this unusual strategy of diastereoselective alcohol silylation. Ligand (sufficient reactivity with moderately electron‐rich monophosphines), silane (reasonable diastereocontrol with cyclic silanes having a distinct substitution pattern) as well as substrate identification (chelating donor as a requirement) are introductorily described. With these basic data at hand, the substrate scope was defined employing enantiomerically enriched tert‐butyl‐substituted 1‐silatetraline and highly reactive 1‐silaindane. The synthetic part is complemented by the determination of the stereochemical course at the silicon atom in the Si–O coupling step followed by its quantum‐chemical analysis thus providing a solid mechanistic picture of this remarkable transformation.  相似文献   

8.
Phase‐transfer catalysis has been recognized as a powerful method for establishing practical protocols for organic synthesis, because it offers several advantages, such as operational simplicity, mild reaction conditions, suitability for large‐scale synthesis, and the environmentally benign nature of the reaction system. Since the pioneering studies on highly enantioselective alkylations promoted by chiral phase‐transfer catalysts, this research field has served as an attractive area for the pursuit of “green” sustainable chemistry. A wide variety of asymmetric transformations catalyzed by chiral onium salts and crown ethers have been developed for the synthesis of valuable organic compounds in the past several decades, especially in recent years.  相似文献   

9.
The hydroazidation of alkynes is the most straightforward pathway to synthetically useful vinyl azides. However, a general hydroazidation of alkynes remains elusive. Herein, a chemo‐ and regioselective transformation of ethynyl carbinols into vinyl azides is described. This reaction produces a wide variety of 2‐azidoallyl alcohols with high efficiency and in good to excellent yields. These compounds constitute a new class of densely functionalized synthetic intermediates. Their synthetic potential has been demonstrated by further transformations into NH aziridines. The mechanistic aspects of the reaction will attract the attention of chemists working on alkyne chemistry and silver catalysis. The findings that are described in this paper represent significant advances in the regioselective hydroelementation of alkynes and open a new reaction manifold for exploitation.  相似文献   

10.
This account is a review on the synthesis and transition‐metal coordination chemistry of N‐heterocyclic silylenes (NHSi’s) over the last 20 years till the present time (2012). Recently, fascinating and novel synthetic methods have been developed to access transition‐metal–NHSi complexes as an emerging class of compounds with a wealth of intriguing reactivity patterns. The striking influence of coordinating NHSi’s to transition‐metal complex fragments affording different reactivities to the “free” NHSi is a connecting theme (“leitmotif”) throughout the review, and highlights the potential of these compounds which lie at the interface of contemporary main‐group and classical organometallic chemistry towards new molecular catalysts for small‐molecule activation.  相似文献   

11.
Two new rhodium‐catalyzed oxidative couplings between sulfoximine derivatives and alkenes by regioselective C?H activation, affording ortho‐olefinated (Heck‐type) products, are reported. A synthetic application of the ortho‐alkenylated products into the corresponding cyclic derivatives has been demonstrated, and a mechanistic rational for the rhodium catalysis is presented.  相似文献   

12.
Although phase‐transfer‐catalyzed asymmetric SNAr reactions provide unique contribution to the catalytic asymmetric α‐arylations of carbonyl compounds to produce biologically active α‐aryl carbonyl compounds, the electrophiles were limited to arenes bearing strong electron‐withdrawing groups, such as a nitro group. To overcome this limitation, we examined the asymmetric SNAr reactions of α‐amino acid derivatives with arene chromium complexes derived from fluoroarenes, including those containing electron‐donating substituents. The arylation was efficiently promoted by binaphthyl‐modified chiral phase‐transfer catalysts to give the corresponding α,α‐disubstituted α‐amino acids containing various aromatic substituents with high enantioselectivities.  相似文献   

13.
(Acetoxymethyl)silanes 2 , 7 a – c , and 10 a – c with at least one alkoxy group, of the general formula (AcOCH2)Si(OR)3?n(CH3)n (R: Me, Et, iPr; n=0, 1, 2), were synthesized from the corresponding (chloromethyl)silanes 1 , 6 a – c , and 9 a – c by treatment with potassium acetate under phase‐transfer‐catalysis conditions. These compounds were found to provide 2,2,5,5‐organo‐substituted 1,4‐dioxa‐2,5‐disilacyclohexanes 3 , 8 a – c , and 11 a – c if treated with organotin(IV) catalysts such as dioctyltin oxide. The reaction proceeds through transesterification of the acetoxy and alkoxy units followed by ring‐closure to form a dimeric six‐membered ring. The corresponding alkyl acetates are formed as the reaction by‐products. With these mild conditions, the method overcomes the drawbacks of previously reported synthetic routes to furnish 2,2,5,5‐tetramethyl‐1,4‐dioxa‐2,5‐disilacyclohexane ( 3 ) and even allows the synthesis of 1,4‐dioxa‐2,5‐disilacyclohexanes bearing hydrolytically labile alkoxy substituents at the silicon atom in good yields and high purity. These new materials were fully characterized by NMR spectroscopy, elemental analysis, mass spectrometry, and X‐ray analysis (trans‐ 8 a ).  相似文献   

14.
The efficient construction of nitrogen‐containing organic compounds is a major challenge in chemical synthesis. Imines are one of the most important classes of electrophiles for this transformation. However, both the available imines and applicable nucleophiles for them are quite limited given the existing preparative methods. Described herein are imine precursors which generate reactive imines with a wide variety of substituents under mild basic conditions. This approach enables the construction of various nitrogen‐containing molecules which cannot be accessed by the traditional approach. The utility of the novel imine precursor was demonstrated in the asymmetric Mannich‐type reaction under phase‐transfer conditions.  相似文献   

15.
The development of photocatalytic reactions has provided many novel opportunities to expand the scope of synthetic organic chemistry. In parallel with progress towards uncovering new reactivity, there is consensus that efforts focused on providing detailed mechanistic insight in order to uncover underlying excited‐state reactions are essential to maximise formation of desired products. With this in mind, we have investigated the recently reported sensitization‐initiated electron transfer (SenI‐ET) reaction for the C?H arylation of activated aryl halides. Using a variety of techniques, and in particular nanosecond transient absorption spectroscopy, we are able to distinguish several characteristic signals from the excited‐state species involved in the reaction, and subsequent kinetic analysis under various conditions has facilitated a detailed insight into the likely reaction mechanism.  相似文献   

16.
The selective isomerization of strained heterocyclic compounds is an important tool in organic synthesis. An unprecedented regioselective isomerization of 2,2‐disubstituted oxetanes into homoallylic alcohols is described. The use of tris(pentafluorophenyl)borane (B(C6F5)3), a commercially available Lewis acid was key to obtaining good yields and selectivities since other Lewis acids afforded mixtures of isomers and substantial polymerization. The reaction took place under exceptionally mild reaction conditions and very low catalyst loading (0.5 mol %). DFT calculations disclose the mechanistic features of the isomerization and account for the high selectivity displayed by the B(C6F5)3 catalyst. The synthetic applicability of the new reaction is demonstrated by the preparation of γ‐chiral alcohols using iridium‐catalyzed asymmetric hydrogenation.  相似文献   

17.
Described herein are two different methods for the synthesis of vinyl halides by a shuttle catalysis based iridium‐catalyzed transfer hydrohalogenation of unactivated alkynes. The use of 4‐chlorobutan‐2‐one or tert‐butyl halide as donors of hydrogen halides allows this transformation in the absence of corrosive reagents, such as hydrogen halides or acid chlorides, thus largely improving the functional‐group tolerance and safety profile of these reactions compared to the state‐of‐the‐art. This method has granted access to alkenyl halide compounds containing acid‐sensitive groups, such as tertiary alcohols, silyl ethers, and acetals. The synthetic value of those methodologies has been demonstrated by gram‐scale synthesis where low catalyst loading was achieved.  相似文献   

18.
Cooperativity has become a mainstay in the context of multicatalytic reaction design. The combination of two or more catalysts that possess mechanistically distinct activation principles within a single chemical setting can enable bond constructions that would be impossible for any of the catalysts alone. An emerging subdomain within the field of multicatalysis is characterized by single‐electron transfer processes that are sustained by the synergistic merger of sulfur or selenium organocatalysis with photoredox catalysis. From a synthetic viewpoint, such processes have tremendous value, as they can offer new and economic pathways for the concise assembly of complex molecular architectures. Thus, the aim of this Review is to highlight recent methodological progress made in this area and to contextualize representative transformations with the mechanistic underpinnings that enable these reactions.  相似文献   

19.
Bromoacetate‐substituted [3‐(2‐O‐β‐cyclodextrin)‐2‐hydroxypropoxy]propylsilyl‐appended silica particles (BACD‐HPS), an important and useful synthetic intermediate for preparation of novel types of macrocycles‐capped β‐CD‐bonded silica particles including crown ether/cyclam/calix[4]arene‐capped β‐CD‐bonded silica particles, have been prepared and used as chiral stationary phase for HPLC. This synthetic stationary phase is characterized by means of elemental analysis. For the first time, the chromatographic behavior of BACD‐HPS was systematically evaluated with several disubstituted benzenes and some chiral drug compounds under both normal and RP conditions in HPLC. The results show that BACD‐HPS has excellent selectivity for the separation of aromatic positional isomers and chiral isomers of some drug compounds when used as stationary phase in HPLC.  相似文献   

20.
A tandem imine addition‐SNAr annulation reaction has been developed as a new approach to the synthesis of 4‐oxo‐1,2,3,4‐tetrahydroquinoline‐3‐carboxylic esters. A series of these structures has been generated by reacting selected imines with tert‐butyl 2‐fluoro‐5‐nitrobenzoylacetate. Structural variations in the final products are accomplished by changing the substituents on the imine and the alkyl group of the ester. The title compounds are isolated as their enols in 55–97% yield without the need for added base or catalysts. The synthesis of the starting materials as well as mechanistic studies and further synthetic conversions of the products are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号