首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 675 毫秒
1.
Different homoleptic and heteroleptic lithium–zinc combinations were prepared, and structural elements obtained on the basis of NMR spectroscopic experiments and DFT calculations. In light of their ability to metalate anisole, pathways were proposed to justify the synergy observed for some mixtures. The best basic mixtures were obtained either by combining ZnCl2 ? TMEDA (TMEDA=N,N,N′,N′‐tetramethylethylenediamine) with [Li(tmp)] (tmp=2,2,6,6‐tetramethylpiperidino; 3 equiv) or by replacing one of the tmp in the precedent mixture with an alkyl group. The reactivity of the aromatic lithium zincates supposedly formed was next studied, and proved to be substrate‐, base‐, and electrophile‐dependent. The aromatic lithium zincates were finally involved in palladium‐catalyzed cross‐coupling reactions with aromatic chlorides and bromides.  相似文献   

2.
Organometallic bases are becoming increasingly complex, because mixing components can lead to bases superior to single‐component bases. To better understand this superiority, it is useful to study metalated intermediate structures prior to quenching. This study is on 1‐phenyl‐1H‐benzotriazole, which was previously deprotonated by an in situ ZnCl2 ? TMEDA/LiTMP (TMEDA=N,N,N′,N′‐tetramethylethylenediamine; TMP=2,2,6,6‐tetramethylpiperidide) mixture and then iodinated. Herein, reaction with LiTMP exposes the deficiency of the single‐component base as the crystalline product obtained was [{4‐R‐1‐(2‐lithiophenyl)‐1H‐benzotriazole ? 3THF}2], [R=2‐C6H4(Ph)NLi], in which ring opening of benzotriazole and N2 extrusion had occurred. Supporting lithiation by adding iBu2Al(TMP) induces trans‐metal trapping, in which C?Li bonds transform into C?Al bonds to stabilise the metalated intermediate. X‐ray diffraction studies revealed homodimeric [(4‐R′‐1‐phenyl‐1H‐benzotriazole)2], [R′=(iBu)2Al(μ‐TMP)Li], and its heterodimeric isomer [(4‐R′‐1‐phenyl‐1H‐benzotriazole){2‐R′‐1‐phenyl‐1H‐benzotriazole}], whose structure and slow conformational dynamics were probed by solution NMR spectroscopy.  相似文献   

3.
Most recent advances in metallation chemistry have centred on the bulky secondary amide 2,2,6,6‐tetramethylpiperidide (TMP) within mixed metal, often ate, compositions. However, the precursor amine TMP(H) is rather expensive so a cheaper substitute would be welcome. Thus this study was aimed towards developing cheaper non‐TMP based mixed‐metal bases and, as cis‐2,6‐dimethylpiperidide (cis‐DMP) was chosen as the alternative amide, developing cis‐DMP zincate chemistry which has received meagre attention compared to that of its methyl‐rich counterpart TMP. A new lithium diethylzincate, [(TMEDA)LiZn(cis‐DMP)Et2] (TMEDA=N,N,N′,N′‐tetramethylethylenediamine) has been synthesised by co‐complexation of Li(cis‐DMP), Et2Zn and TMEDA, and characterised by NMR (including DOSY) spectroscopy and X‐ray crystallography, which revealed a dinuclear contact ion pair arrangement. By using N,N‐diisopropylbenzamide as a test aromatic substrate, the deprotonative reactivity of [(TMEDA)LiZn(cis‐DMP)Et2] has been probed and contrasted with that of the known but previously uninvestigated di‐tert‐butylzincate, [(TMEDA)LiZn(cis‐DMP)tBu2]. The former was found to be the superior base (for example, producing the ortho‐deuteriated product in respective yields of 78 % and 48 % following D2O quenching of zincated benzamide intermediates). An 88 % yield of 2‐iodo‐N,N‐diisopropylbenzamide was obtained on reaction of two equivalents of the diethylzincate with the benzamide followed by iodination. Comparisons are also drawn using 1,1,1,3,3,3‐hexamethyldisilazide (HMDS), diisopropylamide and TMP as the amide component in the lithium amide, Et2Zn and TMEDA system. Under certain conditions, the cis‐DMP base system was found to give improved results in comparison to HMDS and diisopropylamide (DA), and comparable results to a TMP system. Two novel complexes isolated from reactions of the di‐tert‐butylzincate and crystallographically characterised, namely the pre‐metallation complex [{(iPr)2N(Ph)C?O}LiZn(cis‐DMP)tBu2] and the post‐metallation complex [(TMEDA)Li(cis‐DMP){2‐[1‐C(=O)N(iPr)2]C6H4}Zn(tBu)], shed valuable light on the structures and mechanisms involved in these alkali‐metal‐mediated zincation reactions. Aspects of these reactions are also modelled by DFT calculations.  相似文献   

4.
We report the first transition metal catalyst- and ligand-free conjugate addition of lithium tetraorganozincates (R4ZnLi2) to nitroolefins. Displaying enhanced nucleophilicity combined with unique chemoselectivity and functional group tolerance, homoleptic aliphatic and aromatic R4ZnLi2 provide access to valuable nitroalkanes in up to 98 % yield under mild conditions (0 °C) and short reaction time (30 min). This is particularly remarkable when employing β-nitroacrylates and β-nitroenones, where despite the presence of other electrophilic groups, selective 1,4 addition to the C=C is preferred. Structural and spectroscopic studies confirmed the formation of tetraorganozincate species in solution, the nature of which has been a long debated issue, and allowed to unveil the key role played by donor additives on the aggregation and structure of these reagents. Thus, while chelating N,N,N’,N’-tetramethylethylenediamine (TMEDA) and (R,R)-N,N,N’,N’-tetramethyl-1,2-diaminocyclohexane (TMCDA) favour the formation of contacted-ion pair zincates, macrocyclic Lewis donor 12-crown-4 triggers an immediate disproportionation process of Et4ZnLi2 into equimolar amounts of solvent-separated Et3ZnLi and EtLi.  相似文献   

5.
The electrical properties of siloxane oligomers prepared from the reaction of 1,4‐naphthalenediol or 1,4‐naphthoquinone with diphenylsilane using different palladium catalysts, such as PdCl2, Pd(TMEDA)Cl2, Pd(TEEDA)Cl2 (where TMEDA = N,N′‐tetramethylethylenediamine, TEEDA = N,N′‐tetraethylethylenediamine), are dependent on the catalyst. Thermoelectric switching properties can be obtained from the siloxane prepared from the coupling reaction of diphenylsilane with 1,4‐naphthoquinone or 1,4‐naphthalenediol using Pd(TMEDA)Cl2 as catalyst. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
Four Lewis‐base stabilized N‐silver(I) succinimide complexes of type [Ln·Rm·AgNC4H4O2] (L = N,N,N′,N′‐tetramethylethylenediamine (TMEDA), n = 1, m = 0, 2a ; L = P(OEt)3, n = 2, m = 0, 2b ; L = PPh3, m = 0, n = 2, 2c ; L = P(OMe)3, R = TMEDA, n = 1, m = 1, 2d ) were prepared by a “one‐pot” synthesis methodology and characterized. The molecular structures of 2a and 2c have been determined by using X‐ray single crystal analysis. Complex 2a exists as ion pair {[Ag(TMEDA)2]+[Ag(NC4H4O2)2]} in the solid state and complex 2c is a monomer with the three‐coordinate silver atom. Complex 2b was used as precursor in the deposition of silver for the first time by using MOCVD technique. The silver films obtained were characterized using scanning electron microscopy (SEM) and energy‐dispersion X‐ray analysis (EDX). SEM and EDX studies show that the dense and homogeneous silver films could be obtained.  相似文献   

7.
Bulky amido ligands are precious in s‐block chemistry, since they can implant complementary strong basic and weak nucleophilic properties within compounds. Recent work has shown the pivotal importance of the base structure with enhancement of basicity and extraordinary regioselectivities possible for cyclic alkali metal magnesiates containing mixed n‐butyl/amido ligand sets. This work advances alkali metal and alkali metal magnesiate chemistry of the bulky arylsilyl amido ligand [N(SiMe3)(Dipp)]? (Dipp=2,6‐iPr2‐C6H3). Infinite chain structures of the parent sodium and potassium amides are disclosed, adding to the few known crystallographically characterised unsolvated s‐block metal amides. Solvation by N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine (PMDETA) or N,N,N′,N′‐tetramethylethylenediamine (TMEDA) gives molecular variants of the lithium and sodium amides; whereas for potassium, PMDETA gives a molecular structure, TMEDA affords a novel, hemi‐solvated infinite chain. Crystal structures of the first magnesiate examples of this amide in [MMg{N(SiMe3)(Dipp)}2(μ‐nBu)] (M=Na or K) are also revealed, though these breakdown to their homometallic components in donor solvents as revealed through NMR and DOSY studies.  相似文献   

8.
NMR spectroscopic studies of the catalytic addition reaction of ZnEt2 to PhC(O)CF3 in the presence of three very efficient catalysts [TMEDA, tBuBOX, and L ; where L is a chiral diamine synthesized from optically pure (R,R)‐1,2‐diphenylethylenediamine and (S)‐2,2′‐bis‐(bromomethyl)‐1,1′‐binaphthalene] reveal large differences in their behavior. For the ligands TMEDA and tBuBOX, the catalysis shows no unusual features and proceeds via [(N?N)Zn(Et){OC(CF3)(Et)Ph}]. For N?N? L , the observation of autocatalytic asymmetric enhancement during the catalysis, and unusual inverse concentration dependence on the reaction rate, indicate the participation of an additional novel catalytic cycle that goes through a dinuclear intermediate containing one ZnEt2 and one ZnEt fragment connected by N?N and OR bridges. Interestingly, the 19F NMR signals of the main product of the reaction ([Zn(Et){OC*(CF3)(Et)Ph}]2) allowed us to assess the enantioselectivity of the processes in situ without the assistance of chiral chromatography.  相似文献   

9.
In the title compound, C22H24N4O11, the N‐glycosidic torsion angles O′—C′—N—C and O′—C′—N—N are ?34.1 (6) and 148.8 (3)°, respectively. The mol­ecule displays an α‐d configuration with the ribo­furan­ose moiety in an O′‐exo–C′‐endo pucker. There are only weak C—H?O and C—H?N intra‐ and intermolecular interactions.  相似文献   

10.
Studied extensively in solution and in the solid state, Li(TMP) (TMP=2,2,6,6‐tetramethylpiperidide) is an important utility reagent popular as a strongly basic, weakly nucleophilic tool for C? H metallation. Recently, there has been a surge in interest in mixed metal derivatives containing the bulky TMP anion. Herein, we start to develop hetero (alkali metal) TMP chemistry by reporting the N,N,N′,N′‐tetramethylethylenediamine (TMEDA)‐hemisolvated sodium–lithium cycloheterodimer [(tmeda)Na(μ‐tmp)2Li], and its TMEDA‐free variant [{Na(μ‐tmp)Li(μ‐tmp)}], which provides a rare example of a crystallographically authenticated polymeric alkali metal amide. Experimental observations suggest that the former is a kinetic intermediate en route to the latter thermodynamic product. Furthermore, a third modification, the mixed potassium–lithium‐rich cycloheterotrimer [(tmeda)K(μ‐tmp)Li(μ‐tmp)Li(μ‐tmp)], has also been synthesised and crystallographically characterised. On moving to the bulkier tridentate donor N,N,N′,N′′,N′′‐pentamethyldiethylenediamine (PMDETA), the additional ligation forces the sodium–lithium and potassium–dilithium ring species to open giving the acyclic arc‐shaped complexes [(pmdeta)Na(μ‐tmp)Li(tmp)] and [(pmdeta)K(μ‐tmp)Li(μ‐tmp)Li(tmp)], respectively. Completing the series, the potassium–lithium and potassium–sodium derivatives [(pmdeta)K(μ‐tmp)2M] (M=Li, Na) have also been isolated as closed structures with a distinctly asymmetric central MN2K ring. Collectively, these seven new bimetallic compounds display five distinct structural motifs, four of which have never hitherto been witnessed in TMP chemistry and three of which are unprecedented in the vast structural library of alkali metal amide chemistry.  相似文献   

11.
The porous metal–organic framework (MOF) {[Zn2(TCPBDA)(H2O)2]?30 DMF?6 H2O}n ( SNU‐30 ; DMF=N,N‐dimethylformamide) has been prepared by the solvothermal reaction of N,N,N′,N′‐tetrakis(4‐carboxyphenyl)biphenyl‐4,4′‐diamine (H4TCPBDA) and Zn(NO3)2?6 H2O in DMF/tBuOH. The post‐synthetic modification of SNU‐30 by the insertion of 3,6‐di(4‐pyridyl)‐1,2,4,5‐tetrazine (bpta) affords single‐crystalline {[Zn2(TCPBDA)(bpta)]?23 DMF?4 H2O}n ( SNU‐31 SC ), in which channels are divided by the bpta linkers. Interestingly, unlike its pristine form, the bridging bpta ligand in the MOF is bent due to steric constraints. SNU‐31 can be also prepared through a one‐pot solvothermal synthesis from ZnII, TCPBDA4?, and bpta. The bpta linker can be liberated from this MOF by immersion in N,N‐diethylformamide (DEF) to afford the single‐crystalline SNU‐30 SC , which is structurally similar to SNU‐30 . This phenomenon of reversible insertion and removal of the bridging ligand while preserving the single crystallinity is unprecedented in MOFs. Desolvated solid SNU‐30′ adsorbs N2, O2, H2, CO2, and CH4 gases, whereas desolvated SNU‐31′ exhibits selective adsorption of CO2 over N2, O2, H2, and CH4, thus demonstrating that the gas adsorption properties of MOF can be modified by post‐synthetic insertion/removal of a bridging ligand.  相似文献   

12.
In situ mixtures of CdCl2?TMEDA (0.5 equiv; TMEDA=N,N,N′,N′‐tetramethylethylenediamine) or InCl3 (0.33 equiv) with [Li(tmp)] (tmp=2,2,6,6‐tetramethylpiperidino; 1.5 or 1.3 equiv, respectively) were compared with the previously described mixture of ZnCl2?TMEDA (0.5 equiv) and [Li(tmp)] (1.5 equiv) for their ability to deprotonate anisole, benzothiazole, and pyrimidine. [(tmp)3CdLi] proved to be the best base when used in tetrahydrofuran at room temperature, as demonstrated by subsequent trapping with iodine. The Cd–Li base then proved suitable for the metalation of a large range of aromatics including benzenes bearing reactive functional groups (CONEt2, CO2Me, CN, COPh) or heavy halogens (Br, I), and heterocycles (from the furan, thiophene, pyrrole, oxazole, thiazole, pyridine, and diazine series). Five‐membered heterocycles benefiting from doubly activated positions were similarly dideprotonated at room temperature. The aromatic lithium cadmates thus obtained were involved in palladium‐catalyzed cross‐coupling reactions or simply quenched with acid chlorides.  相似文献   

13.
The direct preparation of a kind of fluorinating reagent 1 [F‐TEDA‐N(SO2Ph)2] was realized in high yield via the complexation of N‐fluorobenzenesulfonimide (NFSI) with 1‐(chloromethyl)‐1,4‐diazabicyclo[2.2.2]octan‐1‐ium N′,N′‐bis‐(benzenesulfonylimide) salt. In its fluorination to oxindoles, the fluorinating products 6 were afforded in moderate to high yields.  相似文献   

14.
Post‐metallation derivatives of the sodium dialkyl(amido)zincate reagent (TMEDA)Na(μ‐TMP)Zn(tBu)2 (TMEDA is N,N,N′,N′‐tetramethylethylenediamine and TMP is 2,2,6,6‐tetramethylpiperidide) have been of structural interest due to the insight they give into aromatic metallation mechanisms. Here, the aromatic substrate is formally replaced with [ZnO]2 to give tetra‐tert‐butyldi‐μ4‐oxido‐bis(tetramethylethylenediamine‐κ2N,N′)bis(μ2‐2,2,6,6‐tetramethylpiperidin‐1‐ido‐κ2N:N)disodiumtetrazinc hexane 0.59‐solvate, [Na2Zn4(C4H9)4(C9H18N)2O2(C6H16N2)2]·0.59C6H14. The crystallographically centrosymmetric complex retains many of the structural features of its parent monomer but has an unusual dimeric structure, with a central planar Zn–O–Zn–O ring joined to two orthogonal near‐planar Zn–O–Na–N rings through the distorted tetrahedral geometries of the oxide ions.  相似文献   

15.
Complexes [Pd(C6H3XH‐2‐R′‐5)Y(N^N)] (X=O, NH; Y=Br, I; R′=H, NO2; N^N=N,N,N′,N′‐tetramethylethylenediamine (tmeda), 2,2′‐bipyridine (bpy), 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine (dtbbpy)) react with RN?C?E (E=NR, S) or RC≡N (R=alkyl, aryl, NR′′2) and TlOTf (OTf=CF3SO3) to give, respectively, 1) products of the insertion of the C?E group into the C? Pd bond, protonation of the N atom, and coordination of X to Pd, [Pd{κ2X,E‐(XC6H3{EC(NHR)}‐2‐R′‐4)}(N^N)]OTf or [Pd(κ2X,N‐{ZC6H3(NH?CR)‐2‐R′‐4})(N^N)]OTf, or products of the coordination of carbodiimides and OH addition, [Pd{κ2C,N‐(C6H4{OC(NR)}NHR‐2)}(bpy)]OTf; or 2) products of the insertion of the C≡N group to Pd and N‐protonation, [Pd(κ2X,N‐{XC6H3(NH?CR)‐2‐R′‐4})(N^N)]OTf.  相似文献   

16.
In the title compound, catena‐poly[[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[1,1′‐biphenyl]‐4,4′‐dicarboxylato‐[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]], [Zn2(C14H8O4)Cl2(C26H22N4O2)3]n, the ZnII centre is four‐coordinate and approximately tetrahedral, bonding to one carboxylate O atom from a bidentate bridging dianionic [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand, to two pyridine N atoms from two N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide ligands and to one chloride ligand. The pyridyl ligands exhibit bidentate bridging and monodentate terminal coordination modes. The bidentate bridging pyridyl ligand and the bridging [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand both lie on special positions, with inversion centres at the mid‐points of their central C—C bonds. These bridging groups link the ZnII centres into a one‐dimensional tape structure that propagates along the crystallographic b direction. The tapes are interlinked into a two‐dimensional layer in the ab plane through N—H...O hydrogen bonds between the monodentate ligands. In addition, the thermal stability and solid‐state photoluminescence properties of the title compound are reported.  相似文献   

17.
N,N,N′,N′‐Tetramethylethylenediamine (TMEDA) has been one of the most prevalent and successful additives used in iron catalysis, finding application in reactions as diverse as cross‐coupling, C?H activation, and borylation. However, the role that TMEDA plays in these reactions remains largely undefined. Herein, studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA has provided molecular‐level insight into the role of TMEDA in achieving effective catalysis. The key is the initial formation of TMEDA–iron(II)–alkyl species which undergo a controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)–alkyl complexes. While TMEDA is not bound to the catalytically active species, these active iron(0) complexes cannot be accessed in the absence of TMEDA. This mode of action, allowing for controlled reduction and access to iron(0) species, represents a new paradigm for the role of this important reaction additive in iron catalysis.  相似文献   

18.
Reactions of aquapentachloroplatinic acid, (H3O)[PtCl5(H2O)]·2(18C6)·6H2O ( 1 ) (18C6 = 18‐crown‐6), and H2[PtCl6]·6H2O ( 2 ) with heterocyclic N, N donors (2, 2′‐bipyridine, bpy; 4, 4′‐di‐tert‐butyl‐2, 2′‐bipyridine, tBu2bpy; 1, 10‐phenanthroline, phen; 4, 7‐diphenyl‐1, 10‐phenanthroline, Ph2phen; 2, 2′‐bipyrimidine, bpym) afforded with ligand substitution platinum(IV) complexes [PtCl4(N∩N)] (N∩N = bpy, 3a ; tBu2bpy, 3b ; Ph2phen, 5 ; bpym, 7 ) and/or with protonation of N, N donor yielding (R2phenH)2[PtCl6] (R = H, 4a ; Ph, 4b ) and (bpymH)+ ( 8 ). With UV irradiation Ph2phen and bpym reacted with reduction yielding platinum(II) complexes [PtCl2(N∩N)] (N∩N = Ph2phen, 6 ; bpym, 9 ). Identities of all complexes were established by microanalysis as well as by NMR (1H, 13C, 195Pt) and IR spectroscopic investigations. Molecular structures of [PtCl4(bpym)]·MeOH ( 7 ) and [PtCl2(Ph2phen)] ( 6 ) were determined by X‐ray diffraction analyses. Differences in reactivity of bpy/bpym and phen ligands are discussed in terms of calculated structures of complexes [PtCl5(N∩N)] with monodentately bound N, N ligands (N∩N = bpy, 10a ; phen, 10b ; bpym, 10c ).  相似文献   

19.
In the title compound, C14H19IN2O8, an almost planar heterocyclic base is oriented anti with respect to the puckered sugar moiety. The sugar pucker is C2′‐endo/C3′‐exo, the N‐glycosidic torsion angle is 166.4 (4)° and the conformation of O5′ is +sc. The mol­ecules are linked by hydrogen bonds of the types N—H?O and O—H?O.  相似文献   

20.
Synthesis and Crystal Structures of 1,1,3,3‐Tetramethylimidazolinium Dichloride and 1,1,4‐Trimethylpiperazinium Chloride Single crystals of 1,1,3,3‐tetramethylimidazolinium dichloride ( 1 ) and 1,1,4‐trimethylpiperazinium chloride ( 2 ) were obtained by reaction of CH2Cl2 with tetramethylethylenediamine (TMEDA) and NNN′N″N″‐pentamethyldiethylenetriamine (PMDETA), respectively. Both compounds are characterized by single crystal X‐ray diffraction and by IR spectroscopy. 1: [C7H18N2]Cl2, space group P21/c, Z = 4, lattice dimensions at 193(2) K: a = 821.97(11), b = 1130.38(8), c = 1143.08(13) pm, β = 100.348(15)°, R1 = 0.0271. The C7N2 heterocyclic ring has envelope conformation like other salts with this dication. 2: [C7H17N2]Cl, space group P212121, Z = 4, lattice dimensions at 100(2) K: a = 1030.37(8), b = 1036.55(6), c = 831.39(4) pm, R1 = 0.0180. Although the heterocyclic mono‐cation is without site symmetry in the crystal, its molecular symmetry is close to Cs, forming chair conformation of the C4N2 six‐membered ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号