共查询到13条相似文献,搜索用时 11 毫秒
1.
2.
3.
The S2 state produces two basic electron paramagnetic resonance signal types due to the manganese cluster in oxygen-evolving complex, which are influenced by the solvents, and cryoprotectant added to the photosystem II samples. It is presumed that a single manganese center oxidation occurs on S1 → S2 state transition. The S2 state has readily visible multiline and electron paramagnetic resonance signals and hence it has been the most studied of all the Kok cycle intermediates due to the ease of experimental preparation and stability. The S2 state was studied using electron paramagnetic resonance spectroscopy at X-band frequencies. The aim of this study was to determine the spin states of the signal. The multiline signal was observed to arise from a ground state spin ½ centre while the 4.1 signal generated at ≈140 K NIR illumination was proposed to arise from a spin center with rhombic distortion. The ‘ground’ state 4.1 signal was generated solely or by conversion from the multiline. The data analysis methods used involved numerical simulations of the experimental spectra on relevant models of the oxygen-evolving complex cluster. A strong focus in this paper was on the ‘ground’ state 4.1 signal, whether it is a rhombic spin state signal or an axial spin state signal. The data supported an X-band CW-EPR-generated 4.1 signal as originating from a near rhombic spin 5/2 of the S2 state of the PSII manganese cluster. 相似文献
4.
On Ammonia Binding to the Oxygen‐Evolving Complex of Photosystem II: A Quantum Chemical Study 下载免费PDF全文
Johannes Schraut Prof. Dr. Martin Kaupp 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(24):7300-7308
A recent EPR study (M. Perrez Navarro et al., Proc. Natl. Acad. Sci. 2013 , 110, 15561) provided evidence that ammonia binding to the oxygen‐evolving complex (OEC) of photosystem II in its S2 state takes place at a terminal‐water binding position (W1) on the “dangler” manganese center MnA. This contradicted earlier interpretations of 14N electron‐spin‐echo envelope modulation (ESEEM) and extended X‐ray absorption fine‐structure (EXAFS) data, which were taken to indicate replacement of a bridging oxo ligand by an NH2 unit. Here we have used systematic broken‐symmetry density functional theory calculations on large (ca. 200 atom) model clusters of an extensive variety of substitution patterns and core geometries to examine these contradictory pieces of evidence. Computed relative energies clearly favor the terminal substitution pattern over bridging‐ligand arrangements (by about 20–30 kcal mol?1) and support W1 as the preferred binding site. Computed 14N EPR nuclear‐quadrupole coupling tensors confirm previous assumptions that the appreciable asymmetry may be accounted for by strong, asymmetric hydrogen bonding to the bound terminal NH3 ligand (mainly by Asp61). Indeed, bridging NH2 substitution would lead to exaggerated asymmetries. Although our computed structures confirm that the reported elongation of an Mn–Mn distance by about 0.15 Å inferred from EXAFS experiments may only be reproduced by bridging NH2 substitution, it seems possible that the underlying EXAFS data were skewed by problems due to radiation damage. Overall, the present data clearly support the suggested terminal NH3 coordination at the W1 site. The finding is significant for the proposed mechanistic scenarios of OEC catalysis, as this is not a water substrate site, and effects of this ammonia binding on catalysis thus must be due to more indirect influences on the likely substrate binding site at the O5 bridging‐oxygen position. 相似文献
5.
Ying Lv Xiangyu Ma Jinsong Chai Dr. Haizhu Yu Prof. Dr. Manzhou Zhu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(61):13977-13986
Face-centered-cubic (FCC) silver nanoclusters (NCs) adopting either cubic or half-cubic growth modes have been recently reported, but the origin of these atomic assembly patterns and how they are achieved, which would inform our understanding of larger FCC silver nanomaterials, are both unknown. In this study, the cubic and half-cubic growth modes have been unified based on common structural characteristics, and differentiated depending on the starting blocks (cubic vs. half cubic). In both categories, the silver atoms adopt octahedral Ag6, linear AgS2 (in projection drawing), or tetrahedral AgS3P binding modes, and the sulfur atoms adopt T-shaped SAg3 and orthogonal SAg4 modes. An additional T-shaped AgS3 mode is oriented on the surface edge in cubic NCs to complete the cubic framework. Density functional theory calculations indicated that the high structural regularity originates from the strong diffusing capacity of the Ag(5d) and S(3p) orbitals, and the angular momentum distribution of the formed superatomic orbitals. The equatorial orientation of μ4-S or μ4-Ag determines whether growth stops or continues. In particular, a density-of-states analysis indicated that the octahedral silver atoms are chemically more reactive than the silver atoms in the AgS3P motif, regardless of whether the parent NC functions as an electron donor or acceptor. 相似文献
6.
Jérôme Cuny Eric Furet Dr. Régis Gautier Dr. Laurent Le Pollès Dr. Chris J. Pickard Prof. Jean‐Baptiste d'Espinose de Lacaillerie Dr. 《Chemphyschem》2009,10(18):3320-3329
The application of periodic density functional theory‐based methods to the calculation of 95Mo electric field gradient (EFG) and chemical shift (CS) tensors in solid‐state molybdenum compounds is presented. Calculations of EFG tensors are performed using the projector augmented‐wave (PAW) method. Comparison of the results with those obtained using the augmented plane wave + local orbitals (APW+lo) method and with available experimental values shows the reliability of the approach for 95Mo EFG tensor calculation. CS tensors are calculated using the recently developed gauge‐including projector augmented‐wave (GIPAW) method. This work is the first application of the GIPAW method to a 4d transition‐metal nucleus. The effects of ultra‐soft pseudo‐potential parameters, exchange‐correlation functionals and structural parameters are precisely examined. Comparison with experimental results allows the validation of this computational formalism. 相似文献
7.
Structural and Magnetic Properties of CoGen− (n=2–11) Clusters: Photoelectron Spectroscopy and Density Functional Calculations 下载免费PDF全文
Xiao‐Jiao Deng Dr. Xiang‐Yu Kong Dr. Xi‐Ling Xu Dr. Hong‐Guang Xu Prof. Dr. Wei‐Jun Zheng 《Chemphyschem》2014,15(18):3987-3993
A series of cobalt‐doped germanium clusters, CoGen?/0 (n=2–11), are investigated by using anion photoelectron spectroscopy combined with density functional theory calculations. For both anionic and neutral CoGen (n=2–11) clusters, the critical size of the transition from exo‐ to endohedral structures is n=9. Natural population analysis shows that there is electron transfer from the Gen framework to the Co atom at n=7–11 for both anionic and neutral CoGen clusters. The magnetic moments of the anionic and neutral CoGen clusters decrease to the lowest values at n=10 and 11. The transfer of electrons from the Gen framework to the Co atom and the minimization of the magnetic moments are related to the evolution of CoGen structures from exo‐ to endohedral. 相似文献
8.
Dr. Simon Petrie Dr. Richard Terrett Prof. Robert Stranger Prof. Ron J. Pace 《Chemphyschem》2020,21(8):785-801
Three atomic resolution crystal structures of Photosystem II, in the double flashed, nominal S3 intermediate state of its Mn4Ca Water Oxidising Complex (WOC), have now been presented, at 2.25, 2.35 and 2.08 Å resolution. Although very similar overall, the S3 structures differ within the WOC catalytic site. The 2.25 Å structure contains only one oxy species (O5) in the WOC cavity, weakly associated with Mn centres, similar to that in the earlier 1.95 Å S1 structure. The 2.35 Å structure shows two such species (O5, O6), with the Mn centres and O5 positioned as in the 2.25 Å structure and O5−O6 separation of ∼1.5 Å. In the latest S3 variant, two oxy species are also seen (O5, Ox), with the Ox group appearing only in S3, closely ligating one Mn, with O5−Ox separation <2.1 Å. The O5 and O6/Ox groups were proposed to be substrate water derived species. Recently, Petrie et al. (Chem. Phys. Chem., 2017 ) presented large scale Quantum Chemical modelling of the 2.25 Å structure, quantitatively explaining all significant features within the WOC region. This, as in our earlier studies, assumed a ‘low’ Mn oxidation paradigm (mean S1 Mn oxidation level of +3.0, Petrie et al., Angew. Chem. Int. Ed., 2015 ), rather than a ‘high’ oxidation model (mean S1 oxidation level of +3.5). In 2018 we showed (Chem. Phys. Chem., 2018 ) this oxidation state assumption predicted two energetically close S3 structural forms, one with the metal centres and O5 (as OH−) positioned as in the 2.25 Å structure, and the other with the metals similarly placed, but with O5 (as H2O) located in the O6 position of the 2.35 Å structure. The 2.35 Å two flashed structure was likely a crystal superposition of two such forms. Here we show, by similar computational analysis, that the latest 2.08 Å S3 structure is also a likely superposition of forms, but with O5 (as OH−) occupying either the O5 or Ox positions in the WOC cavity. This highlights a remarkable structural ‘lability’ of the WOC centre in the S3 state, which is likely catalytically relevant to its water splitting function. 相似文献
9.
10.
11.
Zohreh Hassanzadeh Fard Lin Xiong Christian Müller Małgorzata Hołyńska Stefanie Dehnen Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(27):6595-6604
Caged chalcogens : A series of novel, functionalized TnSm cages (T=Ge, Sn; n/m=4:6, 3:4) with terminal COO(H) or COMe groups were synthesized and show further reactivity toward CuI complexes (an example of which is shown here) and to hydrazines. This led to the generation of functionalized Cu/T/S clusters or the formation of Schiff bases at the C?O groups, respectively, with or without further fragmentation of the T/S core.
12.
Zohreh Hassanzadeh Fard Lin Xiong Christian Müller Małgorzata Hołyńska Stefanie Dehnen Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(27):6539-6539
Proof‐of‐principle is reported for a directed functionalization and derivatization of chalcogenidometallate cages with respect to the formation of hybrid compounds containing (M)/T/E semi‐conductor nodes (M=Cu; T=Ge, Sn; E=S). In their Full Paper on page 6595 ff. , S. Dehnen et al. show how it is possible to generate functionalized ternary CuSnS or CuGeS clusters and to transfer COMe ligands into CR(N–NH2) or CR(N–NHPh) terminal groups by reaction of a series of novel, functionalized thiometallate cages [(RT)nSm] (n/m=4/6, 3/4), the R ligands of which are terminated by COO(H) or COMe.