首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Multiple bonds between boron and transition metals are known in many borylene (:BR) complexes via metal dπ→BR back‐donation, despite the electron deficiency of boron. An electron‐precise metal–boron triple bond was first observed in BiB2O? [Bi≡B?B≡O]? in which both boron atoms can be viewed as sp‐hybridized and the [B?BO]? fragment is isoelectronic to a carbyne (CR). To search for the first electron‐precise transition‐metal‐boron triple‐bond species, we have produced IrB2O? and ReB2O? and investigated them by photoelectron spectroscopy and quantum‐chemical calculations. The results allow to elucidate the structures and bonding in the two clusters. We find IrB2O? has a closed‐shell bent structure (Cs, 1A′) with BO? coordinated to an Ir≡B unit, (?OB)Ir≡B, whereas ReB2O? is linear (C∞v, 3Σ?) with an electron‐precise Re≡B triple bond, [Re≡B?B≡O]?. The results suggest the intriguing possibility of synthesizing compounds with electron‐precise M≡B triple bonds analogous to classical carbyne systems.  相似文献   

8.
9.
Unexpected Reduction of [Cp*TaCl4(PH2R)] (R = But, Cy, Ad, Ph, 2,4,6‐Me3C6H2; Cp* = C5Me5) by Reaction with DBU – Molecular Structure of [(DBU)H][Cp*TaCl4] (DBU = 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) [Cp*TaCl4(PH2R)] (R = But, Cy, Ad, Ph, 2,4,6‐Me3C6H2 (Mes); Cp* = C5Me5) react with DBU in an internal redox reaction with formation of [(DBU)H][Cp*TaCl4] ( 1 ) (DBU = 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) and the corresponding diphosphane (P2H2R2) or decomposition products thereof. 1 was characterised spectroscopically and by crystal structure determination. In the solid state, hydrogen bonding between the (DBU)H cation and one chloro ligand of the anion is observed.  相似文献   

10.
The reaction of highly Lewis acidic tetra(o‐tolyl)diborane(4) with CO afforded a mixture of boraindane and boroxine by the cleavage of the C≡O triple bond. 13C labeling experiments confirmed that the carbon atom in the boraindane stems from CO. Simultaneously, formation of boroxine 3 could be considered as borylene transfer to capture the oxygen atom from CO. The reaction of diborane(4) with tBu?NC afforded an azaallene, while the reaction with Xyl?NC furnished cyclic compounds by direct C?H borylations.  相似文献   

11.
12.
13.
The synthesis and characterization of Ru2Cl(μ‐O2CCH2CH2OMe)4 ( 1 ), [Ru2(μ‐O2CCH2CH2OMe)4(H2O)2]BF4 ( 2 ), PPh4[Ru2Cl2(μ‐O2CCH2CH2OMe)4] ( 3 ), (PPh4)2[Ru2Br2(μ‐O2CCH2CH2OMe)4]NO3 ( 4 ), and (PPh4)2[Ru2I2(μ‐O2CCH2CH2OMe)4]I0.5(NO3)0.5 ( 5 ), are described. The structure of complexes 2 – 5 was established by single crystal X‐ray diffraction. All complexes show a diruthenium(II, III) unit bridged by four 3‐methoxypropionate ligands. The cationic complex 2 have two axially coordinated water molecules, with a Ru–Ru bond distance of 2.2681(12) Å. This complex shows a supramolecular two‐dimensional organization across hydrogen bonded between the axial water molecules and two methoxy groups of adjacent diruthenium units. The metal‐metal bond lengths, in the anionic complexes 3 , 4 , and 5 , are 2.3039(5), 2.3077(6), and 2.3115(8) Å, respectively. These distances are longer than the observed in compound 2 . In the anionic complexes, the axial positions of the diruthenium units are occupied by two halide ligands. Complexes 3 – 5 have PPh4+ cations as counterion, although 4 and 5 are double salts with PPh4NO3 and PPh4I0.5(NO3)0.5, respectively. All compounds have been also characterized by elemental analysis, magnetic measurements, and spectroscopic techniques.  相似文献   

14.
The synthesis of the first terminal Group 9 hydrazido(2‐) complex, Cp*IrN(TMP) ( 6 ) (TMP=2,2,6,6‐tetramethylpiperidine) is reported. Electronic structure and X‐ray diffraction analysis indicate that this complex contains an Ir?N triple bond, similar to Bergman's seminal Cp*Ir(NtBu) imido complex. However, in sharp contrast to Bergman's imido, 6 displays remarkable redox non‐innocent reactivity owing to the presence of the Nβ lone pair. Treatment of 6 with MeI results in electron transfer from Nβ to Ir prior to oxidative addition of MeI to the iridium center. This behavior opens the possibility of carrying out facile oxidative reactions at a formally IrIII metal center through a hydrazido(2?)/isodiazene valence tautomerization.  相似文献   

15.
16.
The title compound tetraethylammonium hexacarbonylbis(μ-pyridine-2-thiolato-S∶S) dimolybdenum [Et4N]2[Mo2(CO)6(pys)2] crystallizes in the monoclinic, space group, P21/c with a=13.217(2), b=21.648(2), c=27.193(6)(), β=82.52(2)°, V=7714.6()3, Z=8, Mr=840.77, Dc=1.45 g/cm3, μ=7.8 cm-1, R=0.038 and Rw=0.040 for 6082 reflections with I≥3σ(I). X-ray crystal structure study reveals that the asymmetric unit of the title compound is comprised of two independent formulations of the molecular formula. Each dianion has approximate C2 symmetry and the dimetallic Mo2S2 core adopts a "butterfly" conformation with a dihedral angle between the halves of 139.3(1)° for the first independent anion and 142.8(1)° for the second one. The two pyridine rings lie on the same side of the molecule in a cis arrangement and the Mo...Mo separations are 3.76(1) and 3.838(1)().  相似文献   

17.
18.
The salt elimination reaction of the transition carbonyl metal-lates [L(CO)nM](Na/K) (M = Cr, Mo, W, Mn, Re, Fe, Co, Ni; L= CO, n5-C5R5, PR3; n= 1-4; R= alkyl, aryl) with the base-stabilized galliumhalides ClaGaR3 -a(Do) (R = H, alkyl, halide; Do = THF, N(CH3)3, NC7H13) or ClaGa[(CH2)3N-R2](R)2 - a yielded almost quantitatively the transition metal-substituted, gallanes [L(CO)nM]aGaR3 - a(Do) and [L(CO)n-M]aGa[(CH2)3NR2](R)2 - a, respectively. Residual halide functionalities in these complexes were selectively replaced by various other groups. The new compounds were characterized by means of elemental analysis, 1H-, 13C-, 31P-NMR, MS, and lR v(CO) data. The single-crystal X-ray structure analysis of trans-(Ph3P)(CO)3Co-Ga[(CH2) 3N(C2H5)2](R)( 6s : R = Cl, 6t : R= CH3) showed s̀(Co-Ga) lengths of 237.78(4) and 249.5(1) pm, respectively. A short s̀(Fe-Ga) contact of 236.18(3) pm was found for (n5-C5H5)(CO)2Fe-Ga-Cl2[N(CH 3)3] ( 5a ). Low-pressure MOCVD experiments were performed to give thin films of analytically pure CoGa alloy.  相似文献   

19.
The first set of five heterobimetallic MM′(form)4 (form=formamidinate) complexes containing a BiRh core has been successfully synthesized. The Bi?Rh bond lengths lie between 2.5196(6) and 2.572(2) Å, consistent with Bi?Rh single bonds. All complexes have rich electrochemistry, with the [BiRh]4+/5+ redox couples spanning approximately 700 mV and showing a strong correlation to remote ligand substitution. Visible spectroscopy showed two features for complexes 1 – 5 at approximately 459 and 551 nm, unique to BiRh paddlewheel complexes that are attributed to LMCT bands into the Bi?Rh σ* orbital. The large spin–orbit coupling (SOC) of Bi creates a massive Bi?Rh magnetic anisotropy, Δχ, approximately ?4800×10?36 m3molecule?1, which is the largest value reported for any single bond to date.  相似文献   

20.
[(ArPMI)Mo(CO)4] complexes (PMI=pyridine monoimine; Ar=Ph, 2,6‐di‐iso‐propylphenyl) were synthesized and their electrochemical properties were probed with cyclic voltammetry and infrared spectroelectrochemistry (IR‐SEC). The complexes undergo a reduction at more positive potentials than the related [(bipyridine)Mo(CO)4] complex, which is ligand based according to IR‐SEC and DFT data. To probe the reaction product in more detail, stoichiometric chemical reduction and subsequent treatment with CO2 resulted in the formation of a new product that is assigned as a ligand‐bound carboxylate, [(PMI)Mo(CO)3(CO2)]2?, by NMR spectroscopic methods. The CO2 adduct [(PMI)Mo(CO)3(CO2)]2? could not be isolated and fully characterized. However, the C?C coupling between the CO2 molecule and the PDI ligand was confirmed by X‐ray crystallographic characterization of one of the decomposition products of [(PMI)Mo(CO)3(CO2)]2?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号