首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using time‐resolved monochromatic high energy X‐ray diffraction, we present an in situ study of the solvothermal crystallisation of a new MOF [Yb2(BDC)3(DMF)2]?H2O (BDC=benzene‐1,4‐dicarboxylate and DMF=N,N‐dimethylformamide) under solvothermal conditions, from mixed water/DMF solvent. Analysis of high resolution powder patterns obtained reveals an evolution of lattice parameters and electron density during the crystallisation process and Rietveld analysis shows that this is due to a gradual topochemical replacement of coordinated solvent molecules. The water initially coordinated to Yb3+ is replaced by DMF as the reaction progresses.  相似文献   

2.
Covalent post‐synthetic modification is a versatile method for gaining high‐level synthetic control over functionality within porous metal–organic frameworks and for generating new materials not accessible through one‐step framework syntheses. Here we apply this topotactic synthetic approach to a porous spin crossover framework and show through detailed comparison of the structures and properties of the as‐synthesised and covalently modified phases that the modification reaction proceeds quantitatively by a thermally activated single‐crystal‐to‐single‐crystal transformation to yield a material with lowered spin‐switching temperature, decreased lattice cooperativity, and altered color. Structure–function relationships to emerge from this comparison show that the approach provides a new route for tuning spin crossover through control over both outer‐sphere and steric interactions.  相似文献   

3.
Through topological rationalization, a zeotype mesoporous Zr‐containing metal–organic framework (MOF), namely PCN‐777, has been designed and synthesized. PCN‐777 exhibits the largest cage size of 3.8 nm and the highest pore volume of 2.8 cm3 g?1 among reported Zr‐MOFs. Moreover, PCN‐777 shows excellent stability in aqueous environments, which makes it an ideal candidate as a support to incorporate different functional moieties. Through facile internal surface modification, the interaction between PCN‐777 and different guests can be varied to realize efficient immobilization.  相似文献   

4.
In recent years, metal–organic frameworks (MOFs) have become an area of intense research interest because of their adjustable pores and nearly limitless structural diversity deriving from the design of different organic linkers and metal structural building units (SBUs). Among the recent great challenges for scientists include switchable MOFs and their corresponding applications. Switchable MOFs are a type of smart material that undergo distinct, reversible, chemical changes in their structure upon exposure to external stimuli, yielding interesting technological applicability. Although the process of switching shares similarities with flexibility, very limited studies have been devoted specifically to switching, while a fairly large amount of research and a number of Reviews have covered flexibility in MOFs. This Review focuses on the properties and general design of switchable MOFs. The switching activity has been delineated based on the cause of the switching: light, spin crossover (SCO), redox, temperature, and wettability.  相似文献   

5.
Mercury(II) ions have emerged as a widespread environmental hazard in recent decades. Despite different kinds of detection methods reported to sense Hg2+, it still remains a challenging task to develop new sensing molecules to replenish the fluorescence‐based apparatus for Hg2+ detection. This communication demonstrates a novel fluorescent sensor using UiO‐66‐NH2 and a T‐rich FAM‐labeled ssDNA as a hybrid system to detect Hg2+ sensitively and selectively. To the best of our knowledge, it has rarely been reported that a MOF is utilized as the biosensing platform for Hg2+ assay.  相似文献   

6.
Materials that can recognize the changes in their local environment and respond by altering their inherent physical and/or chemical properties are strong candidates for future “smart” technology materials. Metal–organic frameworks (MOFs) have attracted a great deal of attention in recent years owing to their designable architecture, host–guest chemistry, and softness as porous materials. Despite this fact, studies on the tuning of the properties of MOFs by external stimuli are still rare. This review highlights the recent developments in the field of stimulus‐responsive MOFs or so‐called smart MOFs. In particular, the various stimuli used and the utility of stimulus‐responsive smart MOFs for various applications such as gas storage and separation, sensing, clean energy, catalysis, molecular motors, and biomedical applications are highlighted by using representative examples. Future directions in the developments of stimulus‐responsive smart MOFs and their applications are proposed from a personal perspective.  相似文献   

7.
8.
9.
We present a new metal–organic framework (MOF) built from lanthanum and pyrazine‐2,5‐dicarboxylate (pyzdc) ions. This MOF, [La(pyzdc)1.5(H2O)2] ? 2 H2O, is microporous, with 1D channels that easily accommodate water molecules. Its framework is highly robust to dehydration/hydration cycles. Unusually for a MOF, it also features a high hydrothermal stability. This makes it an ideal candidate for air drying as well as for separating water/alcohol mixtures. The ability of the activated MOF to adsorb water selectively was evaluated by means of thermogravimetric analysis, powder and single‐crystal X‐ray diffraction and adsorption studies, indicating a maximum uptake of 1.2 mmol g?1 MOF. These results are in agreement with the microporous structure, which permits only water molecules to enter the channels (alcohols, including methanol, are simply too large). Transient breakthrough simulations using water/methanol mixtures confirm that such mixtures can be separated cleanly using this new MOF.  相似文献   

10.
Sphere of destiny : Metal–organic spheres with remarkable encapsulation properties are readily prepared and their ability to host a wide range of guest species, including nanoparticles, fluorescent dyes, and quantum dots, is demonstrated. Both the metal–organic spheres and the encapsulated species maintain their fluorescent or magnetic properties, highlighting the importance of these systems as new multifunctional materials.

  相似文献   


11.
The development of porous composite materials is of great significance for their potentially improved performance over those of individual components and extensive applications in separation, energy storage, and heterogeneous catalysis. Now mesoporous metal–organic frameworks (MOFs) with macroporous melamine foam (MF) have been integrated using a one‐pot process, generating a series of MOF/MF composite materials with preserved crystallinity, hierarchical porosity, and increased stability over that of melamine foam. The MOF nanocrystals were threaded by the melamine foam networks, resembling a ball‐and‐stick model overall. The resulting MOF/MF composite materials were employed as an effective heterogeneous catalyst for the epoxidation of cholesteryl esters. Combining the advantages of interpenetrative mesoporous and macroporous structures, the MOF/melamine foam composite has higher dispersibility and more accessibility of catalytic sites, exhibiting excellent catalytic performance.  相似文献   

12.
Two trinuclear zinc‐based cyclohelicates, Zn–PDB (PDB=[5‐(dibenzylamino)‐N1′,N3′‐bis(pyridin‐2‐ylmethylene)isophthalohydrazide]) and Zn–PMB (PMB=[5‐(bodipy‐oxy)‐N1′,N3′‐bis(pyridin‐2‐ylmethylene)isophthalohydrazide]) containing dibenzylamino and BODIPY groups, respectively, were generated by incorporating two amide‐containing tridentate chelators into meta‐positions of a substituted phenyl ring. Single‐crystal structure analysis and related spectroscopic characterizations demonstrated the formation of macrocyclic helicals both in the solid state and in solution. The host–guest behavior of the cyclohelical hosts towards γ‐glutamyl‐cysteinyl‐glycine (GSH) and its component amino acids was investigated by spectroscopic titrations. UV/Vis absorption titration and NMR titrations of Zn–PDB and Zn–PMB upon addition of the above‐mentioned guests suggested that the Glu residue of GSH was positioned within the cavity. The COO groups interacted with metal ions through static interactions. The Cys moiety of GSH interacted with the amide groups sited in host molecules through hydrogen‐bonding interactions to produce measurable spectral changes. Fluorescent titrations of Zn–PMB upon the addition of GSH and ESI‐MS investigations of the titration solutions confirmed the host–guest interaction modes and revealed the possible 1:1 complexation stoichiometry. These results showed that the recognition of a substrate within the cavity of functionalized metal–organic cage‐like receptors could be a useful method to produce supramolecular sensors for biomolecules.  相似文献   

13.
A new avenue for making porous frameworks has been developed by borrowing an idea from molecularly imprinted polymers (MIPs). In lieu of the small molecules commonly used as templates in MIPs, soft metal components, such as CuI, are used to orient the molecular linker and to leverage the formation of the network. Specifically, a linear dicarboxylate linker with thioether side groups reacted simultaneously with Ln3+ ions and CuI, leading to a bimetallic net featuring strong, chemically hard Eu3+–carboxylate links, as well as soft, thioether‐bound Cu2I2 clusters. The CuI block imparts water stability to the host; with the tunable luminescence from the lanthanide ions, this creates the first white‐emitting MOF that is stable in boiling water. The Cu2I2 block also readily reacts with H2S, and enables sensitive colorimetric detection while the host net remains intact.  相似文献   

14.
A 3D dynamic coordination framework with an electron‐deficient pore surface has been synthesized by using ZnII (having a variable coordination number) and a predesigned flexible π‐electron‐deficient core‐based ligand, exhibiting chemical separations based on pore surface functionalization (π Lewis acidic pore surfaces and open metal sites) and framework flexibility, giving rise to a unique smart guest‐responsive material.  相似文献   

15.
Two anionic metal–organic frameworks were successfully prepared based on pre‐designed flexible multicarboxylate ligands and indium cations. Owing to the flexibility of the bridging organic linkers, which could not themselves sustain the frameworks, both of the frameworks showed thermal instability and shrinkage after removal of guest solvent molecules. Inspired by bamboo, we used a guest‐dependent approach to tune the permanent porosity of the MOFs. In this approach, several tetraalkyammonium cations of different sizes were introduced into the channels by cation exchange to act as partitions and to support the main frameworks. This approach significantly enhanced the stability of the framework and its permanent porosity. Moreover, the gas‐adsorption properties (such as gate sorption, hysteresis, and selectivity) of the MOFs were also modulated by the judicious choice of guest cations.  相似文献   

16.
Defect engineering in metal–organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of “defect‐engineering” concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect‐engineered CNCs.  相似文献   

17.
Hydrogen‐bond assembly of tripod‐like organic cations [H3‐MeTrip]3+ (1,2,3‐tri(4′‐pyridinium‐oxyl)‐2‐methylpropane) and the hexa‐anionic complex [Zr2(oxalate)7]6? leads to a structurally, thermally, and chemically robust porous 3D supramolecular framework showing channels of 1 nm in width. Permanent porosity has been ascertained by analyzing the material at the single‐crystal level during a sorption cycle. The framework crystal structure was found to remain the same for the native compound, its activated phase, and after guest resorption. The channels exhibit affinities for polar organic molecules ranging from simple alcohols to aniline. Halogenated molecules and I2 are also taken up from hexane solutions by this unique supramolecular framework.  相似文献   

18.
Simultaneous tuning of permanent porosity and modulation of magnetic properties by postsynthetic modification (PSM) with light in a metal–organic framework is unprecedented. With the aim of achieving such a photoresponsive porous magnetic material, a 3D photoresponsive biporous framework, MOF1, which has 2D channels occupied by the guest 1,2‐bis(4‐pyridyl)ethylene (bpee), H2O, and EtOH molecules, has been synthesized. The guest bpee in 1 is aligned parallel to pillared bpee with a distance of 3.9 Å between the ethylenic groups; this allows photoinduced PSM of the pore surface through a [2+2] cycloaddition reaction to yield MOF2. Such photoinduced PSM of the framework structure introduces enhanced CO2 selectivity over that of N2. The higher selectivity in MOF2 than that of MOF1 is studied through theoretical calculations. Moreover, MOF2 unveils reversible changes in Tc with response to dehydration–rehydration. This result demonstrates that photoinduced PSM is a powerful tool for fabricating novel functional materials.  相似文献   

19.
A variety of strategies have been developed to adsorb and separate light hydrocarbons in metal–organic frameworks. Here, we present a new approach in which the pores of a framework are lined with four different C3 sidechains that feature various degrees of branching and saturation. These pendant groups, which essentially mimic a low‐density solvent with restricted degrees of freedom, offer tunable control of dispersive host–guest interactions. The performance of a series of frameworks of the type Zn2(fu‐bdc)2(dabco) (fu‐bdc2?=functionalized 1,4‐benzenedicarboxylate; dabco=1,4‐diazabicyclo[2.2.2]octane), which feature a pillared layer structure, were investigated for the adsorption and separation of methane, ethane, ethylene, and acetylene. The four frameworks exhibit low methane uptake, whereas C2 hydrocarbon uptake is substantially higher as a result of the enhanced interaction of these molecules with the ligand sidechains. Most significantly, the adsorption quantities and selectivity were found to depend strongly upon the type of sidechains attached to the framework scaffold.  相似文献   

20.
Much effort has been devoted to develop new porous structures for methane storage. We report a new porous coordination framework showing exceptional methane uptakes (e.g. 263 v/v at 298 K and 65 bar) and adsorption enthalpies (21.6 kJ mol?1) as high as current record holders functionalized by open metal sites. Computational simulations demonstrated that the hierarchical pore structure consisting of single‐wall nanocages has suitable sizes/shapes and organic binding sites to enforce not only strong host–methane and methane–methane interactions but also dense packing of methane molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号