首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two‐electron reductive carbonylation of the uranium(VI) nitride [U(TrenTIPS)(N)] ( 2 , TrenTIPS=N(CH2CH2NSiiPr3)3) with CO gave the uranium(IV) cyanate [U(TrenTIPS)(NCO)] ( 3 ). KC8 reduction of 3 resulted in cyanate dissociation to give [U(TrenTIPS)] ( 4 ) and KNCO, or cyanate retention in [U(TrenTIPS)(NCO)][K(B15C5)2] ( 5 , B15C5=benzo‐15‐crown‐5 ether) with B15C5. Complexes 5 and 4 and KNCO were also prepared from CO and the uranium(V) nitride [{U(TrenTIPS)(N)K}2] ( 6 ), with or without B15C5, respectively. Complex 5 can be prepared directly from CO and [U(TrenTIPS)(N)][K(B15C5)2] ( 7 ). Notably, 7 reacts with CO much faster than 2 . This unprecedented f‐block reactivity was modeled theoretically, revealing nucleophilic attack of the π* orbital of CO by the nitride with activation energy barriers of 24.7 and 11.3 kcal mol?1 for uranium(VI) and uranium(V), respectively. A remarkably simple two‐step, two‐electron cycle for the conversion of azide to nitride to cyanate using 4 , NaN3 and CO is presented.  相似文献   

2.
We report the synthesis and characterization of a neutral heteroleptic IrIII complex bearing 6‐fluoro‐2‐phenylbenzo[d]thiazole as cyclometalating ligand and (Z)‐6‐(9H‐carbazol‐9‐yl)‐5‐hydroxy‐2,2‐dimethylhex‐4‐en‐3‐one as ancillary ligand. The photodeactivation mechanisms have been elucidated through extensive density functional theory (DFT) calculations. The active role of metal‐centered (3MC) triplet excited states in the nonradiative deactivation pathways is, for first time, confirmed in such complexes.  相似文献   

3.
We have investigated the photophysical and photochemical features of a luminescent heteroleptic RuII‐polypyridyl probe and of its corresponding RuII‐CuII dinuclear complex formed upon the analyte binding through extensive density functional theory (DFT) and time‐dependent DFT (TD‐DFT) calculations. The molecular probe contains the tailored imidazo[4,5‐f]‐1,10‐phenanthroline (IIP) ligand for simultaneously binding the RuII core and the target metal ion in aqueous solution. We have rationalized the static photoluminescence quenching observed upon the CuII coordination, on the grounds of distinct excited state deactivation mechanisms which are absent in the free RuII complex probe. Additionally, the emission quenching found upon increasing the solution pH has also been investigated. When coordinated IIP deprotonates, the nature of the lowest excited state of its complex changes from 3MLCT to 3LLCT/3IL. The strong base‐induced emission quenching can be understood in terms of both the energy‐gap law, since the 3LLCT/3IL states lie at a significantly lower energy than the 3MLCT state increasing the contribution of non‐radiative mechanisms, and the expected slower radiative rates from such 3LLCT/3IL states. After CuII binding, the lowest triplet excited state is similar to the analyte‐free probe in both energy and electronic nature. However, Cu‐centered non‐radiative excited states, populated after photoinduced electron transfer and intersystem crossing processes, are responsible for the population drainage of the emissive state.  相似文献   

4.
The environmental effects on the structural and photophysical properties of [Ru(L)2(dppz)]2+ complexes (L=bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline, tap=1,4,5,8‐tetraazaphenanthrene; dppz=dipyrido[3,3‐a:2′,3′‐c]phenazine), used as DNA intercalators, have been studied by means of DFT, time‐dependent DFT, and quantum mechanics/molecular mechanics calculations. The electronic characteristics of the low‐lying triplet excited states in water, acetonitrile, and DNA have been investigated to decipher the influence of the environment on the luminescent behavior of this class of molecules. The lowest triplet intra‐ligand (IL) excited state calculated at λ≈800 nm for the three complexes and localized on the dppz ligand is not very sensitive to the environment and is available for electron transfer from a guanine nucleobase. Whereas the lowest triplet metal‐to‐ligand charge‐transfer (3MLCT) states remain localized on the ancillary ligand (tap) in [Ru(tap)2(dppz)]2+, regardless of the environment, their character is drastically modified in the other complexes [Ru(phen)2(dppz)]2+ and [Ru(bpy)2(dppz)]2+ upon going from acetonitrile (MLCTdppz/phen or MLCTdppz/bpy) to water (MLCTdppz) and DNA (MLCTphen and MLCTbpy). The change in the character of the low‐lying 3MLCT states accompanying nuclear relaxation in the excited state controls the emissive properties of the complexes in water, acetonitrile, and DNA. The light‐switching effect has been rationalized on the basis of environment‐induced control of the electronic density distributed in the lowest triplet excited states.  相似文献   

5.
Reduction of uranyl(VI) to UV and to UIV is important in uranium environmental migration and remediation processes. The anaerobic reduction of a uranyl UVI complex supported by a picolinate ligand in both organic and aqueous media is presented. The [UVIO2(dpaea)] complex is readily converted into the cis-boroxide UIV species via diborane-mediated reductive functionalization in organic media. Remarkably, in aqueous media the uranyl(VI) complex is rapidly converted, by Na2S2O4, a reductant relevant for chemical remediation processes, into the stable uranyl(V) analogue, which is then slowly reduced to yield a water-insoluble trinuclear UIV oxo-hydroxo cluster. This report provides the first example of direct conversion of a uranyl(VI) compound into a well-defined molecular UIV species in aqueous conditions.  相似文献   

6.
Ultrafast photochemistry of the complexes trans(X,X)-[Ru(X)(2)(CO)(2)(bpy)] (X = Cl, Br, I) was studied in order to understand excited-state reactivity of equatorial CO ligands, coordinated trans to the 2,2'-bipyridine ligand (bpy). TD-DFT calculations have identified the lowest electronic transitions and singlet excited states as mixed X -->bpy/Ru --> bpy ligand to ligand/metal to ligand charge transfer (LLCT/MLCT). Picosecond time-resolved IR spectroscopy in the region of nu(CO) vibrations has revealed that, for X = Cl and Br, subpicosecond CO dissociation is accompanied by bending of the X-Ru-X moiety, producing a pentacoordinated intermediate trans(X,X)-[Ru(X)(2)(CO)(bpy)]. Final movement of an axial halide ligand to the vacant equatorial position and solvent (CH(3)CN) coordination follows with a time constant of 13-15 ps, forming the photoproduct cis(X,X)-[Ru(X)(2)(CO)(CH(3)CN)(bpy)]. For X = I, the optically populated (1)LLCT/MLCT excited state undergoes a simultaneous subpicosecond CO dissociation and relaxation to a triplet IRuI-localized excited state which involves population of an orbital that is sigma-antibonding with respect to the axial I-Ru-I bonds. Vibrationally relaxed photoproduct cis(I,I)-[Ru(I)(2)(CO)(CH(3)CN)(bpy)] is formed with a time constant of ca. 55 ps. The triplet excited state is unreactive, decaying to the ground state with a 155 ps lifetime. The experimentally observed photochemical intermediates and excited states were assigned by comparing calculated (DFT) and experimental IR spectra. The different behavior of the chloro and bromo complexes from that of the iodo complex is caused by different characters of the lowest triplet excited states.  相似文献   

7.
Our previous discovery suggested that substituents on the 1,7 positions delicately modulate the sensing ability of the meso-arylmercapto boron-dipyrromethene (BODIPY) to biothiols. In this work, the impact of delicate modulations on the sensing ability is investigated. Therefore, 1,7-dimethyl, 3,5-diaryl substituted BODIPY is designed and developed and its conformationally restricted species with a meso-arylmercapto moiety ( DM-BDP-SAr and DM-BDP-R-SAr ) as selective fluorescent probes for Cys. Moreover, the lysosome-target probes ( Lyso-S and Lyso-D ) based on DM-BDP-SAr carrying one or two morpholinoethoxy moieties were developed. They were able to detect Cys selectively in vitro with low detection limits. Both Lyso-S and Lyso-D localized nicely in lysosomes in living HeLa cells and exhibited red fluorescence for Cys. Moreover, a novel fluorescence quenching mechanism was proposed from the calculations by density functional theory (DFT). The probes may go through intersystem crossing (from singlet excited state to triplet excited state) to result in fluorescence quenching.  相似文献   

8.
The geometries, energies, and electronic properties of a series of phosphorescent Pt(II) complexes including FPt, CFPt, COFPt, and NFPt have been characterized within density functional theory DFT calculations which can reproduce and rationalize experimental results. The properties of excited‐states of the Pt(II) complexes were characterized by configuration interaction with singles (CIS) method. The ground‐ and excited‐state geometries were optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. In addition, we also have performed a triplet UB3LYP optimization for complex FPt and compared it with CIS method in the emission properties. The datum (562.52 nm) of emission wavelength for complex FPt, which were computed based on the triplet UB3LYP optimization excited‐state geometry, is not agreement with the experiment value (500 nm). The absorption and phosphorescence wavelengths were computed based on the optimized ground‐ and excited‐state geometries, respectively, by the time‐dependent density functional theory (TD‐DFT) methods. The results revealed that the nature of the substituent at the phenylpyridine ligand can influence the distributions of HOMO and LUMO and their energies. Moreover, the auxiliary ligand pyridyltetrazole can make the molecular structure present a solid geometry. In addition, the charge transport quality has been estimated approximately by the predicted reorganization energy (λ). Our result also indicates that the substitute groups and different auxiliary ligand not only change the nature of transition but also affect the rate and balance of charge transfer. By summarizing the results, we can conclude that the NFPt is good OLED materials with a solid geometry and a balanced charge transfer rate. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

9.
The heat-resistant properties towards thermal emission quenching of trans-bis[(β-iminomethyl)aryloxy]platinum(II) complexes bearing 3-iminomethyl-2-naphtholato- ( 1 ), 1-iminomethyl-2-naphtholato- ( 2 ), 2-iminomethyl-1-naphtholato- ( 3 ), and 2-iminomethyl-1-phenolato ( 4 ) moieties, and a mechanistic rationale of these properties, are described in this report. Complex 1 a , with N,N′-dipentyl groups, exhibits intense red emission in 2-methyl-2,3,4,5-tetrahydrofuran (2-MeTHF) at 298 K, whereas the analogues 2 a – 4 a are less or non-emissive under the same measurement conditions. All four complexes are highly emissive at 77 K. The heat-resistant properties toward thermal emission quenching (Φ298 K/Φ77 K) increase in the order 1 a (0.52)> 2 a (0.09)> 3 a (0.02)>> 4 a (0.00). We investigated the emission decay and thermal-deactivation processes using density functional theory (DFT), time-dependent (TD) DFT, and double-hybrid density functional theory (DHDF) calculations of N,N′-diethyl forms 1 b – 4 b , and discuss the results with a focus on the energy levels, molecular structures, and electronic configurations in the triplet excited states. The energy differences between the triplet metal–ligand charge transfer (3MLCT) state and minimum-energy crossing point between the lowest triplet state and singlet ground state (MECP) increase in the order 1 a > 2 a , 3 a > 4 a , consistent with the experimental results for the heat-resistant properties of these complexes. The origin of the present structure dependence of the 3MLCT–MECP energy gap is ascribed to the ease or difficulty of the high-lying dσ* orbital participating in the MECP upon thermal structural distortion. The structure dependence in energy gaps between the π* and dσ* orbitals, which is key for facilitating the thermal deactivation process, is rationally correlated with the extent of aromaticity on the coordination platforms ( 1 b >( 2 b , 3 b )> 4 b ).  相似文献   

10.
The complexation of uranium (VI) with arsonacetic acid has been studied polarographically. A two-step polarographic wave was obtained at lower pH value. The dissociation reaction of the complex was deduced from the kinetic current of the prewave. The asymmetry to half-wave of polarograms was interpreted on the basis of polynuclear complex. The limits of reversibility, chelation, polymerization and precipitation of the complex, which are functions of pH and ligand concentration, were shown.  相似文献   

11.
All the possible uranium(VI, V, IV) oxides, fluorides and oxofluorides were studied theoretically by using density functional theory (DFT) in the generalised gradient approximation (GGA), and three different relativistic methods (all-electron scalar four component Dyall RESC method (AE), relativistic small-core ECPs, and zeroth order regular approximation ZORA). In order to test different correlation methods, for the two former relativistic methods hybrid DFT, and, for the AE method, MP2 molecular orbital calculations were performed as well. Single-point AE-CCSD(T) energies were calculated on MP2 geometries as well. Energies of the uranium(VI) and (V) oxofluorides dissociation, uranium(VI) fluoride hydrolysis and oxofluoride disproportionation were calculated and compared against the available experimental thermochemical data. AE-CCSD(T) energies were the closest to the experiment. For GGA DFT methods, all the relativistic methods used yield similar results. For thermochemistry, the best quantitative agreement with the experimental and CCSD(T) values for both U=O and U-F bond strengths was obtained with hybrid DFT methods, provided that a reliable basis set was used. Both the GGA DFT and MP2 MO methods show overbinding of these bonds; moreover, this overbinding was found to be not uniform but strongly dependent on the coordination environment of the uranium atom in each case. U=O vibrational frequencies given by hybrid DFT, however, are systematically overestimated, and are better reproduced by GGA DFT; MP2 values usually fall in-between. Reaction enthalpies, U=O frequencies and complex geometries given by the PBE, MPBE, BPBE, BLYP and OLYP GGA functionals are quite similar, with OLYP performing slightly better than the others but still not as good as hybrid DFT. The geometries of the molecules are found to be influenced by the following factors: the inverse transinfluence (ITI) of the oxygen ligand and, for U(V), and U(IV), the Jahn-Teller distortion.  相似文献   

12.
A novel class of palladium(II) and platinum(II) complexes bearing tridentate bis‐aryloxide triazole ligands was prepared by using straightforward and high‐yielding synthetic routes. The complexes were fully characterized and the molecular structures of four derivatives were unambigously determined by single‐crystal X‐ray diffractometric analyses. For the most promising luminescent PtII derivatives, further experimental investigations were carried out to characterize their photophysical features and to ascertain the nature of the emitting excited state by means of electronic absorption, steady‐state, and time‐resolved emission techniques in different conditions. In degassed fluid solution the complexes displayed broad and featureless photoluminescence with λem=522–585 nm, excited‐state lifetime up to few microseconds and quantum yield (PLQY) up to 17 %, depending on the nature of both ancillary ligand and substituent on the tridentate ligand. Computational investigation using density functional theory and time‐dependent DFT were performed to gain insight into the electronic processes responsible for optical transitions and structure–photoluminescence relationship. Jointly, experimental and theoretical characterization indicated that the radiative transition arises from an excited state with admixed triplet‐manifold metal‐to‐ligand charge transfer and ligand‐centered (3MLCT/3LC) character. We elucidated the modulation of the photophysical properties upon variation of substituents for this new family of complexes.  相似文献   

13.
Reduction of uranyl(VI) to UV and to UIV is important in uranium environmental migration and remediation processes. The anaerobic reduction of a uranyl UVI complex supported by a picolinate ligand in both organic and aqueous media is presented. The [UVIO2(dpaea)] complex is readily converted into the cis‐boroxide UIV species via diborane‐mediated reductive functionalization in organic media. Remarkably, in aqueous media the uranyl(VI) complex is rapidly converted, by Na2S2O4, a reductant relevant for chemical remediation processes, into the stable uranyl(V) analogue, which is then slowly reduced to yield a water‐insoluble trinuclear UIV oxo‐hydroxo cluster. This report provides the first example of direct conversion of a uranyl(VI) compound into a well‐defined molecular UIV species in aqueous conditions.  相似文献   

14.
The amphiphilic porphinato zinc(II) complex (ZnP) containing four substituted amphiphilic alkyl chains was embedded in the liposomes of l,2-dipalmitoyl-sn-glycero-3phosphocholine. The distance from the embedded ZnP to the outer phase was changed from 9 to 27 ? by changing the substituted alkyl chain length. The electron transfer from the excited Zn complex to methylviologen (MV2+) or benzoquinone (BQ) added in the outer aqueous phase was studied. At first, quenching reactions were analyzed based on dynamic and static reaction models of the excited state. For the MV2+ quencher, only the triplet excited state of the embedded ZnP reacted, and electron transfer occurred at a distance less than 12 ?. In BQ both the singlet and the triplet excited states reacted, and the reaction of the singlet state was a static one indicating that BQ is incorporated into the liposomes. The distribution of the BQ molecule in the quenching sphere of ZnP was presented based on calculations assuming a stepwise incorporation into the quenching sphere.  相似文献   

15.
Photophysical properties in dilute acetonitrile solution are reported for a number of iridium(III) and rhenium(I) complexes. The nature of the lowest excited state of the complexes under investigation is either metal-to-ligand charge transfer ((3)MLCT) or a ligand centred ((3)LC) state. Rate constants, k(q), for quenching of the lowest excited states by molecular oxygen are in the range 1.5 x 10(8) to 1.4 x 10(10) M(-1) s(-1). Efficiency of singlet oxygen production, f(Delta)(T), following oxygen quenching of the lowest excited states of these complexes, are in the range of 0.27-1.00. The rate constants and the efficiency of singlet oxygen formation are quantitatively reproduced by a model that assumes the competition between a non-charge transfer (nCT) and a CT deactivation channel. The balance between CT and nCT deactivation channels, which is described by the relative contribution p(CT) of CT induced deactivation, is discussed. The kinetic model is found to be successfully applied in the case of quenching of the excited triplet states of coordination compounds by oxygen in acetonitrile, as was proposed for the quenching of pi-pi* triplet states by oxygen.  相似文献   

16.
Two pyridylphenols with intramolecular hydrogen bonds between the phenol and pyridine units have been synthesized, characterized crystallographically, and investigated by cyclic voltammetry and UV/Vis spectroscopy. Reductive quenching of the triplet metal‐to‐ligand charge‐transfer excited state of the [Re(CO)3(phen)(py)]+ complex (phen=1,10‐phenanthroline, py=pyridine) by the two pyridylphenols and two reference phenol molecules is investigated by steady‐state and time‐resolved luminescence spectroscopy, as well as by transient absorption spectroscopy. Stern–Volmer analysis of the luminescence quenching data provides rate constants for the bimolecular excited‐state quenching reactions. H/D kinetic isotope effects for the pyridylphenols are on the order of 2.0, and the bimolecular quenching reactions are up to 100 times faster with the pyridylphenols than with the reference phenols. This observation is attributed to the markedly less positive oxidation potentials of the pyridylphenols with respect to the reference phenols (≈0.5 V), which in turn is caused by proton coupling of the phenol oxidation process. Transient absorption spectroscopy provides unambiguous evidence for the photogeneration of phenoxyl radicals, that is, the overall photoreaction is clearly a proton‐coupled electron‐transfer process.  相似文献   

17.
TR ESR spectroscopy was applied to the study of the quenching of excited dioxouranium (VI) (uranyl) nitrate and sulfate by stable nitroxyl radicals of the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) family. Photoexcitation of uranyl in solutions of alcohols of moderate viscosity (η = 3-10 cP) in the presence of TEMPO leads to CIDEP signals of TEMPO due to a radical triplet pair mechanism (RTPM). Polarized nitroxyls were also observed in solutions of polyelectrolyte sodium poly(styrenesulfonate), NaPSS, in the presence of the nitroxyl with a positively charged trimethylammonium group. Photolysis of uranyl salts in solutions of alcohols leads to the generation of free radicals of alcohols. No CIDEP of these radicals was observed, distinguishing U2 2+* from its organic analog, the triplet benzophenone. The probable reason for the lack of polarization in uranyl photoreduction reactions is the difficult access of free radicals to the U atom of the solvated radical UO2+ (V); this atom bears the unpaired electron. The role of polyelectrolytes in the enhancement of the quenching of excited states is discussed. Results are in agreement with the statement that photoexcited uranyl has a triplet multiplicity.  相似文献   

18.
Using density functional theory (DFT) calculations, we revisited a classical problem of uranyl(VI) oxalate photochemical decomposition. Photoreactivities of uranyl(VI) oxalate complexes are found to correlate largely with ligand-structural arrangements. Importantly, the intramolecular photochemical reaction is inhibited when oxalate is bound to uranium exclusively in chelate binding mode. Previously proposed mechanisms involving a UO(2)(C(2)O(4))(2)(2-) (1:2) complex as the main photoreactive species are thus unlikely to apply, because the two oxalic acids are bound to uranium in a chelating binding mode. Our DFT results suggest that the relevant photoreactive species are UO(2)(C(2)O(4))(3)(4-) (1:3) and (UO(2))(2)(C(2)O(4))(5)(6-) (2:5) complexes binding uranium in an unidentate fashion. These species go through decarboxylation upon excitation to the triplet state, which ensues the release of CO(2) and reduction of U(vi) to U(v). The calculations also suggest an alternative intermolecular pathway at low pH via an electron transfer between the excited state *UO(2)(2+) and hydrogen oxalate (HC(2)O(4)(-)) which eventually leads to the production of CO and OH(-) with no net reduction of U(VI). The calculated results are consistent with previous experimental findings that CO is only detected at low pH while U(IV) is detected only at high pH.  相似文献   

19.
A reinvestigation of 2-methylacetophenone ( 1 ) by ns flash photolysis has provided detailed evidence for the reaction sequence of photoenolization. The triplet reaction proceeds adiabatically from the lowest excited triplet state of the ketone, 3 K (1) , to the enol excited triplet state, 3 E (1) , which decays both to enol and ketone ground state. The Z- and E-isomers of the photoenol, Z- E (1) and E- E (1) are formed in about equal yield by the triplet pathway, while direct enolization from the lowest excited singlet state of 1 yields (predominantly) the Z-isomer. Intramolecular reketonization from Z- E (1) to 1 proceeds at a rate of ca. 108s?1 in cyclohexane, but can be retarded to ca. 104s?1 in hydrogen-bond-acceptor solvents. The proposed mechanism is summarized in Scheme 1 and rationalized on the basis of a state correlation diagram, Scheme 2. 3,3,6,8-Tetramethyl-1-tetralone ( 2 ) was used as a reference compound with fixed conformational position of the carbonyl group, and some results from a brief investigation of 2,4-dimethylbenzophenone ( 3 ) are also reported.  相似文献   

20.
The changes in the excited state energies of representative cyclic enones (cyclopentenone and cyclohexenone) induced by lithium ion coordination have been examined using ab initio and DFT methods. Quantitative estimates of the vertical triplet state energies were obtained using configuration interaction calculations at the CIS and CIS(D) levels with the 6‐31+G(d) basis. Inclusion of perturbative doubles corrections has a marked effect on the relative energies of the n–π* and π–π* triplet states. At both CI and CIS(D) levels, lithium complexation is predicted to raise the energy of the n–π* triplet state much more than the π–π* triplet. The trends obtained at the CIS(D) level are reproduced using B3LYP/6‐31+G(d) calculations. Adiabatic excitation energies were also computed by carrying out geometry optimization of the triplet states at the B3LYP level. While the separation between the geometry optimized n–π* and π–π* triplet states is very small for the parent enones, the π–π* triplet is clearly favored in the lithium complexes. These results suggest the possibility of reversing the reactive photoexcited state in enones through cation complexation. The conclusions provide a rationale for interesting variations in product distributions observed for enones in cation exchanged zeolites. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1598–1604, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号