首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel ruthenium (II) complexes were prepared containing 2‐phenyl‐1,8‐naphthyridine derivatives. The coordination modes of these ligands were modified by addition of coordinating solvents such as water into the ethanolic reaction media. Under these conditions 1,8‐naphthyridine (napy) moieties act as monodentade ligands forming unusual [Ru(CO)2Cl21‐2‐phenyl‐1,8‐naphthyridine‐ kN )(η1‐2‐phenyl‐1,8‐naphthyridine‐kN′)] complexes. The reaction was reproducible when different 2‐phenyl‐1,8‐naphthyridine derivatives were used. On the other hand, when dry ethanol was used as the solvent we obtained complexes with napy moieties acting as a chelating ligand. The structures proposed for these complexes were supported by NMR spectra, and the presence of two ligands in the [Ru(CO)2Cl21‐2‐phenyl‐1,8‐naphthyridine‐ kN )(η1‐2‐phenyl‐1,8‐naphthyridine‐kN′)] type complexes was confirmed using elemental analysis. All complexes were tested as catalysts in the hydroformylation of styrene showing moderate activity in N,N′‐dimethylformamide. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
A bioactive Schiff base HL i.e. 2‐hydroxy‐benzoic acid(3,4‐dihydro‐2H ‐naphthalen‐1‐ylidene)‐hydrazide was synthesized by reacting equimolar amount of salicylic acid hydrazide and 1‐tetralone. Co(II), Ni(II) and Zn(II) complexes of ligand HL was synthesized in 1:1 and 1:2 molar ratio of metal to ligand. The structure of the synthesized ligand and metal complexes was established by elemental analysis, molar conductance, magnetic susceptibility measurements, electronic, IR and EPR spectral techniques. For determining the thermal stability the TGA has been done. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6–31 + g(d,p) basis set. Spectral data reveal that ligand behave uninegative tridentate in ML complexes and uninegative bidentate in ML2 complexes. On the basis of characterization octahedral geometry has been assigned for Co(II) and Ni(II) complexes, while tetrahedral for Zn(II) complexes. Antibacterial activity of the synthesized compounds were evaluated against Staphylococcus aureus , Bacillus subtilis, Escherichia coli , Xanthomonas campestris and Pseudomonas aeruginosa and the results revealed that metal complexes show enhanced activity in comparison to free ligand.  相似文献   

3.
Based on 1‐amino‐4‐hydroxy‐triptycene, new saturated and unsaturated triptycene‐NHC (N‐heterocyclic carbene) ligands were synthesized from glyoxal‐derived diimines. The respective carbenes were converted into metal complexes [(NHC)MX] (M=Cu, Ag, Au; X=Cl, Br) and [(NHC)MCl(cod)] (M=Rh, Ir; cod=1,5‐cyclooctadiene) in good yields. The new azolium salts and metal complexes suffer from limited solubility in common organic solvents. Consequently, the introduction of solubilizing groups (such as 2‐ethylhexyl or 1‐hexyl by O‐alkylation) is essential to render the complexes soluble. The triptycene unit infers special steric properties onto the metal complexes that enable the steric shielding of selected areas close to the metal center. Next, chiral and meso‐triptycene based N‐heterocyclic carbene ligands were prepared. The key step in the synthesis of the chiral ligand is the Buchwald–Hartwig amination of 1‐bromo‐4‐butoxy‐triptycene with (1S,2S)‐1,2‐diphenyl‐1,2‐diaminoethane, followed by cyclization to the azolinium salt with HC(OEt)3. The analogous reaction with meso‐1,2‐diphenyl‐1,2‐diaminoethane provides the respective meso‐azolinium salt. Both the chiral and meso‐azolinium salts were converted into metal complexes including [(NHC)AuCl], [(NHC)RhCl(cod)], [(NHC)IrCl(cod)], and [(NHC)PdCl(allyl)]. An in situ prepared chiral copper complex was tested in the enantioselective borylation of α,β‐unsaturated esters and found to give an excellent enantiomeric ratio (er close to 90:10).  相似文献   

4.
The development of novel iridium(III) complexes has continued as an important area of research owing to their highly tunable photophysical properties and versatile applications. In this report, three heteroleptic dimesitylboron‐containing iridium(III) complexes, [Ir(p‐B‐ppy)2(N^N)]+ {p‐B‐ppy=2‐(4‐dimesitylborylphenyl)pyridine; N^N=dipyrido[3,2‐a:2′,3′‐c]phenazine (dppz) ( 1 ), dipyrido[3,2‐d:2′,3′‐f]quinoxaline (dpq) ( 2 ), and 1,10‐phenanthroline (phen) ( 3 )}, were prepared and fully characterized electrochemically, photophysically, and computationally. Altering the conjugated length of the N^N ligands allowed us to tailor the photophysical properties of these complexes, especially their luminescence wavelength, which could be adjusted from λ=583 to 631 nm in CH2Cl2. All three complexes were evaluated as visible‐light‐absorbing sensitizers for the photogeneration of hydrogen from water and as photocatalysts for the photopolymerization of methyl methacrylate. The results showed that all of them were active in both photochemical reactions. High activity for the photosensitizer (over 1158 turnover numbers with 1 ) was observed, and the system generated hydrogen even after 20 h. Additionally, poly(methyl methacrylate) with a relatively narrow molecular‐weight distribution was obtained if an initiator (i.e., ethyl α‐bromophenylacetate) was used. The living character of the photoinduced polymerization was confirmed on the basis of successful chain‐extension experiments.  相似文献   

5.
The toxicity studies of free 5‐[(E)‐2‐(aryl)‐1‐diazenyl]‐2‐hydroxybenzoic acid and 2‐[(E)‐2‐(3‐formyl‐4‐hydroxyphenyl)‐1‐diazenyl]benzoic acid and their tri‐n‐butyltin(IV) complexes were evaluated by using sea urchin early developmental stages as recommended model organisms for toxicity tests. The novel complexes, as the parent tri‐n‐butyltin(IV) chloride (TBTCl), caused mitosis block and induced high embryonic mortality in sea urchin. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
A novel Cu–Zn β‐cyclodextrin (CuZn/β‐CD) model compound was synthesized under ultrasound irradiation to mimic the functionality of copper zinc superoxide dismutase (CuZnSOD). For comparison, Cu/β‐CD and Zn/β‐CD complexes were also synthesized via a sonochemical approach. The obtained complexes were characterized by FTIR, ICP‐OES, UV–vis and Scanning electron microscopy‐Energy dispersive X‐ray (SEM‐EDX) techniques. The SOD activity of the complexes was evaluated by a pyrogallol autoxidation method. These enzyme‐mimetic materials scavenge ambient free radicals, with the potential to provide significant antioxidant protection (scavenging ability > 70%).  相似文献   

7.
Supramolecular complexes consisting of a single‐stranded oligothymine ( dTn ) as the host template and an array of guest molecules equipped with a complementary diaminotriazine hydrogen‐bonding unit have been studied with electrospray‐ionization mass spectrometry (ESI‐MS). In this hybrid construct, a supramolecular stack of guest molecules is hydrogen bonded to dTn . By changing the hydrogen‐bonding motif of the DNA host template or the guest molecules, selective hydrogen bonding was proven. We were able to detect single‐stranded‐DNA (ssDNA)–guest complexes for strands with lengths of up to 20 bases, in which the highest complex mass detected was 15 kDa; these complexes constitute 20‐component self‐assembled objects. Gas‐phase breakdown experiments on single‐ and multiple‐guest–DNA assemblies gave qualitative information on the fragmentation pathways and the relative complex stabilities. We found that the guest molecules are removed from the template one by one in a highly controlled way. The stabilities of the complexes depend mainly on the molecular weight of the guest molecules, a fact suggesting that the complexes collapse in the gas phase. By mixing two different guests with the ssDNA template, a multicomponent dynamic library can be created. Our results demonstrate that ESI‐MS is a powerful tool to analyze supramolecular ssDNA complexes in great detail.  相似文献   

8.
Cyclometalated IrIII complexes with acetylide ppy and bpy ligands were prepared (ppy=2‐phenylpyridine, bpy=2,2′‐bipyridine) in which naphthal ( Ir‐2 ) and naphthalimide (NI) were attached onto the ppy ( Ir‐3 ) and bpy ligands ( Ir‐4 ) through acetylide bonds. [Ir(ppy)3] ( Ir‐1 ) was also prepared as a model complex. Room‐temperature phosphorescence was observed for the complexes; both neutral and cationic complexes Ir‐3 and Ir‐4 showed strong absorption in the visible range (ε=39600 M ?1 cm?1 at 402 nm and ε=25100 M ?1 cm?1 at 404 nm, respectively), long‐lived triplet excited states (τT=9.30 μs and 16.45 μs) and room‐temperature red emission (λem=640 nm, Φp=1.4 % and λem=627 nm, Φp=0.3 %; cf. Ir‐1 : ε=16600 M ?1 cm?1 at 382 nm, τem=1.16 μs, Φp=72.6 %). Ir‐3 was strongly phosphorescent in non‐polar solvent (i.e., toluene), but the emission was completely quenched in polar solvents (MeCN). Ir‐4 gave an opposite response to the solvent polarity, that is, stronger phosphorescence in polar solvents than in non‐polar solvents. Emission of Ir‐1 and Ir‐2 was not solvent‐polarity‐dependent. The T1 excited states of Ir‐2 , Ir‐3 , and Ir‐4 were identified as mainly intraligand triplet excited states (3IL) by their small thermally induced Stokes shifts (ΔEs), nanosecond time‐resolved transient difference absorption spectroscopy, and spin‐density analysis. The complexes were used as triplet photosensitizers for triplet‐triplet annihilation (TTA) upconversion and quantum yields of 7.1 % and 14.4 % were observed for Ir‐2 and Ir‐3 , respectively, whereas the upconversion was negligible for Ir‐1 and Ir‐4 . These results will be useful for designing visible‐light‐harvesting transition‐metal complexes and for their applications as triplet photosensitizers for photocatalysis, photovoltaics, TTA upconversion, etc.  相似文献   

9.
In this work, (Z)‐N‐benzoyl‐N′‐(1H‐1,2,4‐triazol‐3‐yl)carbamimidothioic acid and its Mn(II), Co(II), Cu(II) and Cd(II) complexes were introduced for the first time. This carbonyl thiourea ligand was prepared by the reaction of 1H‐1,2,4‐triazol‐3‐amine with benzoyl isothiocyanate. The structural elucidation of these compounds was performed using elemental analysis and spectral and magnetic measurements. Octahedral structures of all complexes, except Cd(II) complex with a tetrahedral geometry, were confirmed by applying DFT structural optimization. The thermal decomposition behaviour of metal complexes of carbonyl thiourea ligand is discussed. The calculation of kinetic parameters for prepared complexes (Ea, A, ΔH*, ΔS* and ΔG*) of all thermal degradation stages has been evaluated using two comparable approaches. Antimicrobial and ABTS‐antioxidant studies indicated potent activity of Cd(II) complex compared with the other investigated compounds. The cytotoxic activity of the prepared compounds was investigated in vitro. The results indicated potent activity of Mn(II) complex against both HePG2 (liver carcinoma) and MCF‐7 (breast carcinoma) cancer cells.  相似文献   

10.
New polynuclear zinc complexes containing tridentate Schiff base ligands were successfully synthesized and fully characterized. The solid‐state structure of the complexes was determined using single crystal X‐ray diffraction. The complexes display a tetranuclear cubane‐like core structure [Zn4O4] and sowed good catalytic activity towards the ring‐opening polymerization (ROP ) of rac‐lactide (rac‐LA ) and ε‐caprolactone (ε‐CL ) under solvent‐free conditions. The polylactic acid (PLA ) obtained from rac‐LA showed isotactic enrichment, as proved by homonuclear decoupled 1H‐NMR analysis. These complexes also showed good activity and superior control towards the ROP of rac‐LA and ε‐CL in the presence of benzyl alcohol as a co‐initiator. Furthermore, kinetic studies demonstrated that the ROP of rac‐LA and ε‐CL has a first order dependence on both monomer (rac‐LA and ε‐CL ) and catalyst concentration.  相似文献   

11.
1‐tert‐Butyl‐1H‐1,2,4‐triazole (tbtr) was found to react with copper(II) chloride or bromide to give the complexes [Cu(tbtr)2X2]n and [Cu(tbtr)4X2] (X = Cl, Br). 1‐tert‐Butyl‐1H‐tetrazole (tbtt) reacts with copper(II) bromide resulting in the formation of the complex [Cu3(tbtt)6Br6]. The obtained crystalline complexes as well as free ligand tbtr were characterized by elemental analysis, IR spectroscopy, thermal and X‐ray analyses. For free ligand tbtr, 1H NMR and 13C NMR spectra were also recorded. In all the complexes, tbtr and tbtt act as monodentate ligands coordinated by CuII cations via the heteroring N4 atoms. The triazole complexes [Cu(tbtr)2Cl2]n and [Cu(tbtr)2Br2]n are isotypic, being 1D coordination polymers, formed at the expense of single halide bridges between neighboring copper(II) cations. The isotypic complexes [Cu(tbtr)4Cl2] and [Cu(tbtr)4Br2] reveal mononuclear centrosymmetric structure, with octahedral coordination of CuII cations. The tetrazole compound [Cu3(tbtt)6Br6] is a linear trinuclear complex, in which neighboring copper(II) cations are linked by single bromide bridges.  相似文献   

12.
A series of Ag(I) complexes ( 6 , 7 , 8 , 9 ) derived from imidazol‐2‐ylidenes was synthesized by reacting Ag2O with an o‐, m‐, p‐xylyl or 1,3,5‐triazine‐linked imidazolium salts ( 1 , 2 , 3 , 4 ) and then characterizing these using various spectro‐analytical techniques. Additionally, triazine‐linked bis‐imidazolium salt 5 was characterized using the single‐crystal X‐ray diffraction method. Complexes 6–9 were formed from the N‐heterocyclic carbene ligand precursors 1–3 as PF6 salts in good yields. Conversely, salt 5 does not form Ag(I) complex even under various reaction conditions. Using ampicillin as a standard, complexes 6–9 were tested against bacteria strains Escherichia coli and Staphylococcus aureus as Gram‐negative and Gram‐positive bacteria, respectively, showing potent antimicrobial activities against the tested bacteria even at minimum inhibition concentration and bacterial concentration levels. Furthermore, the potential anticancer activities of the reported complexes were evaluated against the human colorectal cancer (HCT 116) cell lines, using 5‐fluorouracil as a standard drug. The highest anticancer activities were observed for complex 8 with an IC50 value of 3.4 μm , whereas the lowest was observed for complex 9 with an IC50 value of 18.1 μm . Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
New metal ion complexes were isolated after coupling with 4‐(2,4‐dihydroxy‐5‐formylphen‐1‐ylazo)‐N ‐(4‐methylpyrimidin‐2‐yl)benzenesulfonamide (H2L) drug ligand. The structural and molecular formulae of drug derivative and its complexes were elucidated using spectral, analytical and theoretical tools. Vibrational spectral data proved that H2L behaves as a monobasic bidentate ligand through one nitrogen from azo group and ionized hydroxyl oxygen towards all metal ions. UV–visible and magnetic moment measurements indicated that Fe(III), Cr(III), Mn(II) and Ni(II) complexes have octahedral configuration whereas Cd(II), Zn(II) and Co(II) complexes are in tetrahedral form. The Cu(II)complex has square planar geometry as verified through electron spin resonance essential parameters. X‐ray diffraction data indicated the amorphous nature of all compounds with no regular arrangement for the solid constituents during the precipitation process. Transmission electron microscopy images showed homogeneous metal ion distribution on the surface of the complexes with nanometric particles. Coats–Redfern equations were applied for calculating thermo‐kinetic parameters for suitable thermal decomposition stages. Gaussian09 and quantitative structure–activity relationship modelling studies were used to verify the structural and biological features. Docking study using microorganism protein receptors was implemented to throw light on the biological behaviour of the proposed drug. The investigated ligand and metal complexes were screened for their in vitro antimicrobial activities against fungal and bacterial strains. The resulting data indicated that the investigated compounds are highly promising bactericides and fungicides. The antitumour activities of all compounds were evaluated towards human liver carcinoma (HEPG2) cell line.  相似文献   

14.
A series of seven emissive europium(III) and terbium(III) complexes was prepared, incorporating a 3‐pyridyl‐4‐azaxanthone or 3‐pyrazolyl‐4‐azaxanthone sensitising moiety within a polydentate macrocyclic ligand. High overall emission quantum yields in aqueous media are attenuated in the presence of protein or certain oxy anions due to displacement of the N,N′‐chelated sensitiser. Nevertheless, these complexes are taken into cells and tend to localise over the first few hours in mitochondria before being trafficked to endosomal compartments. Cell uptake studies, in the presence of competitive inhibitors or promoters of well‐defined uptake pathways, reveal a common uptake mechanism involving macropinocytosis.  相似文献   

15.
Summary: The complexation between polystyrene‐block‐poly(acrylic acid) (PS‐b‐PAA) micelles and poly(ethylene glycol)‐block‐poly(4‐vinyl pyridine) (PEG‐b‐P4VP) is studied, and a facile strategy is proposed to prepare core‐shell‐corona micellar complexes. Micellization of PS‐b‐PAA in ethanol forms spherical core‐shell micelles with PS block as core and PAA block as shell. When PEG‐b‐P4VP is added into the core‐shell micellar solution, the P4VP block is absorbed into the core‐shell micelles to form spherical core‐shell‐corona micellar complexes with the PS block as core, the combined PAA/P4VP blocks as shell and the PEG block as corona. A model is suggested to characterize the core‐shell‐corona micellar complexes.

Schematic formation of core‐shell‐corona (CSC) micellar complexes by adsorption of PEG‐b‐P4VP into core‐shell PS‐b‐PAA micelles.  相似文献   


16.
Aluminum and zinc complexes of 4‐substituted 8‐hydroxyquinoline were used effectively as emissive materials in light‐emitting diodes (LED). The substituents chosen in this study were p‐methoxy‐2‐styryl, p‐diethylamino‐2‐styryl, and naphthalene‐2‐vinyl groups. Their emission spectra were red‐shifted with respect to that of aluminum tris(hydroxylquinolate) (Alq3) as a result of extending their π‐conjugation. All complexes formed amorphous glasses, which exhibited high thermal and electrical stability. Typical LED devices were fabricated by mixing the dyes with polyvinylcarbazole and spin‐coated to form thin films, which were sandwiched between ITO (indium tin oxide) and a metal electrode. These devices displayed yellow‐orange emissions with quantum efficiency ca. 0.4%.  相似文献   

17.
Alkaline earth (Ae) metal complexes of the aminophosphine borane ligand are highly active and iso‐selective catalysts for the ring‐opening polymerization (ROP) of rac‐lactide (LA). The polymerization reactions are well controlled and produce polylactides with molecular weights that are precise and narrowly distributed. Kinetic studies reveal that the ROP of rac‐LA catalyzed by all Ae metal complexes had a first‐order dependency on LA concentration as well as catalyst concentration. A plausible reaction mechanism for Ae metal complex‐mediated ROP of rac‐LA is discussed, based on controlled kinetic experiments and molecular chain mobility.  相似文献   

18.
Metal template synthesis is a useful methodology to make sophisticated macromolecular architectures because of the variety of metal ion coordination. To use metal template methodology, chelating functionalities should be introduced to macromolecules before complexation. In this article, we demonstrate the click‐to‐chelate approach to install chelating functionality to polystyrene (PS) and complexation with Ru(II) ions to form 3‐arm and 4‐arm star‐branched PS Ru(II) complexes. Azide‐terminated PS (PS‐N3) was readily prepared by atom transfer radical polymerization using 1‐bromoethylbenzene as an initiator followed by substitution of bromine by an azide group. The Cu(I)‐catalyzed 1,3‐dipolar cycloaddition of PS‐N3 with 2‐ethynylpyridine or 2,6‐diethynylpyridine affords 2‐(1H‐1,2,3‐triazol‐4‐yl)pyridine (PS‐tapy) or 2,6‐bis(1H‐1,2,3‐triazol‐4‐yl)pyridine (PS‐bitapy) ligands bearing one or two PS chains at the first‐position of the triazole rings. Ru(II) complexes of PS‐tapy and PS‐bitapy were prepared by conventional procedure. The number‐averaged molecular weights (Mns) of these complexes were determined to be 6740 and 10,400, respectively, by size exclusion chromatography using PS standards. These Mn values indicated the formation of 3‐arm and 4‐arm star‐branched PS Ru(II) complexes [Ru(PS‐tapy)3](PF6)2 and [Ru(PS‐bitapy)2](PF6)2 on the basis of the Mn values of PS‐tapy (2090) and PS‐bitapy (4970). The structures of these complexes were also confirmed by UV–vis spectroscopy and X‐ray crystallography of the Ru(II) complexes [Ru(Bn‐tapy)3](PF6)2 and [Ru(Bn‐bitapy)2](PF6)2, which bear a benzyl group instead of a PS chain. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
The molecular geometry, energetics and electronic charge distribution of diorgano‐ and triorgano‐tin(IV) complexes of [protoporphyrin‐IX] and [meso‐tetra(4‐carboxyphenyl)porphine] derivatives were determined at semi‐empirical and ab initio levels. To study the molecular details of the complexes, simpler molecule models were calculated by the ab initio pseudo‐potential method. The molecular properties of these complexes are essentially independent of the presence of the peripheral tin atoms. Agreement was always found among the results of the different computational approaches, as well as between the theoretical and the experimental findings on the molecular geometry of the hypothesized complexes. Interaction modes between water and the organo‐tin systems considered were affected strongly by the presence of peripheral tin atoms. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
Four new lanthanide complexes [Ln(4‐EBA)3(5,5′‐DM‐2,2′‐bipy)]2·2C2H5OH (Ln = Ho ( 1 ), Tb ( 2 ), Er ( 3 )); [Ln(4‐EBA)3(4‐EBAH)(5,5′‐DM‐2,2′‐bipy)]2 (Ln = Eu( 4 ); 4‐EBA =4‐ethylbenzoate; 5,5′‐DM‐2,2′‐bipy =5,5′‐dimethy‐2,2′‐bipyridine; 4‐EBAH = 4‐ethylbenzoic acid) have been synthesized and characterized by elemental analysis and IR spectra. The single crystal results reveal that complexes 1 – 3 are isostructural. It is worth noting that the mole ratios of the carboxylate ligands and neutral ligands is 4:1 in complex 4 , which is different from the former and has been rarely reported. Nevertheless, all complexes are connected to form 1D chain by π ···π wake staking interactions. Additionally, the complexes 2 (Tb(III)) and 4 (Eu(III)) exhibit characteristic luminescent properties, indicating that ligands can be used as sensitizing chromophore in these systems. The thermal decomposition mechanism of the complexes has been investigated by TG/DSC–FTIR technology. Stacked plots of the FTIR spectra of the evolved gases show complexes broken down into H2O, CO2, and other gaseous molecules as well as the gaseous organic fragments. The studies on bacteriostatic activities of complexes show that four complexes have good bacteriostatic activities against Candida albicans but no bacteriostatic activity on Escherichia coli , and Staphylococcus aureus . Additionally, the complexes 1 to 3 have better bacteriostatic activities on Candida albicans than complex 4 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号