首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
3.
Polyfluoride anions have been investigated by matrix‐isolation spectroscopy and quantum‐chemical methods. For the first time the higher polyfluoride anion [F5]? has been observed under cryogenic conditions in neon matrices at 850 cm?1. In addition, a new band for the Cs+[F3]? complex in neon is reported.  相似文献   

4.
Epitaixial metal‐oxide nanocomposite films, which possess interesting multifunctionality, have found applications in a wide range of devices. However, such films are typically produced by using high‐vacuum equipment, like pulse‐laser deposition, molecular‐beam epitaxy, and chemical vapor deposition. As an alternative approach, chemical solution methods are not only cost‐effective but also offer several advantages, including large surface coating, good control over stoichiometry, and the possible use of dopants. Therefore, in this Personal Account, we review the chemistry behind several of the main solution‐based approaches, that is, sol‐gel techniques, metal‐organic decomposition, chelation, polymer‐assisted deposition, and hydrothermal methods, including the seminal works that have been reported so far, to demonstrate the advantages and disadvantages of these different routes.  相似文献   

5.
6.
7.
The recognition properties of heteroditopic hemicryptophane hosts towards anions, cations, and neutral pairs, combining both cation–π and anion–π interaction sites, were investigated to probe the complexity of interfering weak intermolecular interactions. It is suggested from NMR experiments, and supported by CASSCF/CASPT2 calculations, that the binding constants of anions can be modulated by a factor of up to 100 by varying the fluorination sites on the electron‐poor aromatic rings. Interestingly, this subtle chemical modification can also reverse the sign of cooperativity in ion‐pair recognition. Wavefunction calculations highlight how short‐ and long‐range interactions interfere in this recognition process, suggesting that a disruption of anion–π interactions can occur in the presence of a co‐bound cation. Such molecules can be viewed as prototypes for examining complex processes controlled by the competition of weak interactions.  相似文献   

8.
We report the preparation and X‐ray crystallographic characterization of the first crystalline homoatomic polymer chain, which is part of a semiconducting pyrroloperylene–iodine complex. The crystal structure contains infinite polyiodide Iδ?. Interestingly, the structure of iodine within the insoluble, blue starch–iodine complex has long remained elusive, but has been speculated as having infinite chains of iodine. Close similarities in the low‐wavenumber Raman spectra of the title compound and starch–iodine point to such infinite polyiodide chains in the latter as well.  相似文献   

9.
10.
Yolk–shell‐structured Zn–Fe–S multicomponent sulfide materials with a 1:2 Zn/Fe molar ratio were prepared applying a sulfidation process to ZnFe2O4 yolk–shell powders. The Zn–Fe–S powders had mixed sphalerite (Zn,Fe)S and hexagonal FeS crystal structures. The discharge capacities of the Zn–Fe–S powders sulfidated at 350 °C at a constant current density of 500 mA g?1 for the first, second, and fiftieth cycles were 1098, 912, and 913 mA h g?1, respectively. The powders exhibited a high discharge capacity of 602 mA h g?1 even at the high current density of 10 A g?1. The synergistic effect of yolk–shell structure and multicomponent composition improved the electrochemical properties of Zn–Fe–S powders.  相似文献   

11.
Mesoporous ferrihydrite/SiO2 composites were synthesized according to a water‐in‐oil microemulsion method and characterized by X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetry, nitrogen‐adsorption/desorption, and by X‐ray photoelectron spectroscopy. The as‐prepared porous ferrihydrite/SiO2 composites showed an excellent adsorption performance for formaldehyde (HCHO) removal from indoor air at ambient temperature. It was found that the aging time during the synthesis had a significant impact on the pore structure, surface area, and HCHO adsorption of these materials. The ferrihydrite/SiO2 composite that was aged for 3 h in the presence of tetraethyl orthosilicate (TEOS) exhibited a relatively high HCHO adsorption capacity, as well as good recyclability, which was attributed to a relatively large BET surface area, optimal pore size, a suitable Si/Fe atomic ratio, and a synergistic effect between ferrihydrite and SiO2. This work not only demonstrates that porous ferrihydrite/SiO2 composites can act as an efficient adsorbent toward HCHO, but suggests a new route for the rational design of cost‐effective and environmentally benign adsorbents with high performance for indoor air purification.  相似文献   

12.
Graphene oxide is regarded as a major precursor for graphene‐based materials. The development of graphene oxide based derivatives with new functionalities requires a thorough understanding of its chemical reactivity, especially for canonical synthetic methods such as the Diels–Alder cycloaddition. The Diels–Alder reaction has been successfully extended with graphene oxide as a source of diene by using maleic anhydride as a dienophile, thereby outlining the presence of the cis diene present in the graphene oxide framework. This reaction provides fundamental information for understanding the exact structure and chemical nature of graphene oxide. On the basis of high‐resolution 13C‐SS NMR spectra, we show evidence for the formation of new sp3 carbon centers covalently bonded to graphene oxide following hydrolysis of the reaction product. DFT calculations are also used to show that the presence of a cis dihydroxyl and C vacancy on the surface of graphene oxide are promoting the reaction with significant negative reaction enthalpies.  相似文献   

13.
A hierarchical macro‐/mesoporous Ce0.49Zr0.37Bi0.14O1.93 solid‐solution network has been synthesized on a large scale by means of a simple and general polymerization–carbonization–oxidation synthetic route. The as‐prepared product has been characterized by SEM, XRD, TEM, BET surface area measurement, UV/Vis diffuse‐reflectance spectroscopy, energy‐dispersive X‐ray spectroscopy (EDS), and photoelectrochemistry measurements. The photocatalytic activity of the product has been demonstrated through the photocatalytic degradation of methyl orange. Structural characterization has indicated that the hierarchical macro‐/mesoporous solid‐solution network not only contains numerous macropores, but also possesses an interior mesoporous structure. The mesopore size and BET surface area of the network have been measured as 2–25 nm and 140.5 m2 g?1, respectively. The hierarchical macro‐/mesoporous solid‐solution network with open and accessible pores was found to be well‐preserved after calcination at 800 °C, indicating especially high thermal stability. Due to its high specific surface area, the synergistic effect of the coupling of macropores and mesopores, and its high crystallinity, the Ce0.49Zr0.37Bi0.14O1.93 solid‐solution material shows a strong structure‐induced enhancement of visible‐light harvest and exhibits significantly improved visible‐light photocatalytic activity in the photodegradation of methyl orange compared with those of its other forms, such as mesoporous hollow spheres and bulk particles.  相似文献   

14.
A modular approach has been followed for the synthesis of a series of fullerene–ionic‐liquid (IL) hybrids in which the number of IL moieties (two or twelve), anion, and cation have been varied. The combination of C60 and IL give rise to new unique properties in the conjugates such as solubility in water, which was higher than 800 mg mL?1 in several cases. In addition, one of the C60–IL hybrids has been employed for the immobilization of palladium nanoparticles through ion exchange followed by reduction with sodium borohydride. Surprisingly, during the reduction several carbon nanostructures were formed that comprised nano‐onions and nanocages with few‐layer graphene sidewalls, which have been characterized by means of thermogravimetric analysis (TGA), X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction (XRD), scanning electron microscopy/energy‐dispersive X‐ray analysis (SEM‐EDAX), and high‐resolution transmission electron microscopy (HRTEM). Finally, the material thus obtained was successfully applied as catalyst in Suzuki and Mizoroki–Heck reactions in a concentration of just 0.2 mol %. In the former process it was recyclable for five runs with no loss in activity.  相似文献   

15.
A logically chosen redox reaction of submerged Fe0 in an aqueous KMnO4 solution has been reported. The template‐free reaction conditions produced gram amounts of a hierarchical flowerlike Fe3O4–MnO2 nanocomposite. More precisely, freshly prepared Fe0 nanoparticles were prepared from air‐free hot water under submerged conditions using a door magnet. The black Fe0 particles were oxidized in water quantitatively by KMnO4 in the solution phase and the nanocomposite was prepared. The material has been used as a dye adsorbent and the representative cationic dye uptake, recovery, and recycling of the dye becomes easy owing to the ferromagnetic properties and surface negative charge of the material. The nanocomposite also showed a higher specific capacitance (327 F g?1 at 10 mV s?1) than the reported values of pure MnO2 and Fe3O4. The material exhibited a high energy density as well as a high power density, and remained stable even after a large number of charge–discharge cycles.  相似文献   

16.
Nanoporous MnO frameworks with highly dispersed Co nanoparticles were produced from MnCO3 precursors prepared in a gel matrix. The MnO frameworks that contain 20 mol % Co exhibited excellent cycle performance as an anode material for Li‐ion batteries. The solid–electrolyte interphase (SEI) formed in the frameworks through the electrochemical reaction mediates the active materials, such as MnO, Mn, and Li2O, during the conversion reaction in the charge–discharge cycle. The Co nanoparticles and SEI provide the electron and Li‐ion conductive networks, respectively. The ternary nanocomposites of the MnO framework, metallic Co nanoparticles, and embedded SEI are categorized as durable anode materials for Li‐ion batteries.  相似文献   

17.
Herein, we report a facile and “green” synthetic route for the preparation of Ge@C core–shell nanocomposites by using a low‐cost Ge precursor. Field‐emission scanning electron microscopy and transmission electron microscopy analyses confirmed the core–shell nanoarchitecture of the Ge@C nanocomposites, with particle sizes ranging from 60 to 100 nm. Individual Ge nanocrystals were coated by a continuous carbon layer, which had an average thickness of 2 nm. When applied as an anode materials for lithium‐ion batteries, the Ge@C nanocomposites exhibited a high initial discharge capacity of 1670 mAh g?1 and superior rate capability. In particular, Ge@C nanocomposite electrodes maintained a reversible capacity of 734 mAh g?1 after repeated cycling at a current density of 800 mA g?1 over 100 cycles.  相似文献   

18.
19.
The reaction of the phenyl radical 1 with water has been investigated by using matrix isolation spectroscopy and quantum chemical calculations. The primary thermal product of the reaction between 1 and water is a weakly bound complex stabilized by an OH???π interaction. This complex is photolabile, and visible‐light irradiation (λ>420 nm) results in hydrogen atom transfer from water to radical 1 and the formation of a highly labile complex between benzene and the OH radical. This complex is stable under the conditions of matrix isolation, however, continuous irradiation with λ>420 nm light results in the complete destruction of the aromatic system and formation of an acylic unsaturated ketene. The mechanisms of all reaction steps are discussed in the light of ab initio and DFT calculations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号