首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed understanding of the electrochemistry of platinum electrodes is of great importance for the electrochemical oxidation of fuels and electrochemical reduction of dioxygen in fuel cells. The Pt(111) facet is the most representative model mimicking Pt nanoparticles and polycrystals for fundamental studies. Herein, we propose a site-specific model accompanied with the typical elementary steps of the electrochemistry of Pt(111) in non-adsorbing electrolyte within the potential range between 0.05 and 1.15 V versus reversible hydrogen electrode. Simulations were conducted at different scanning rates based on the kinetics models. We reproduce all the anodic and cathodic peaks observed in the reported experimental curves. These results demonstrate the underlying mechanisms of the peak formation in different potential regions.  相似文献   

2.
Plasmon enhanced electrochemistry (PEEC), where specific electrochemical reactions are promoted due to the reduced energy barrier of the reaction processes by the light excited “hot carriers” of the plasmonic nanoparticles, has aroused tremendous interest in recent years. A deep understanding of the PEEC process becomes a key issue for facilitating PEEC catalyst design and improving PEEC performance. This concept article begins with a brief discussion of the macroscopic electrochemical method of PEEC study of the plasmonic nanoparticle ensembles. Following that, we highlight two electrochemical techniques that may possess single nanoparticle sensitivity, i. e., scanning electrochemical microscope and nano-impact electrochemistry. The pros and cons of each technique are discussed and an outlook is given. We hope to provide the readers with the current status of PEEC to evoke reflections regarding the reaction mechanisms, performance improvement, and the utilizations to important systems.  相似文献   

3.
Circulating tumor cells (CTCs) can be collected noninvasively and provide a wealth of information about tumor phenotype. For this reason, their specific and sensitive detection is of intense interest. Herein, we report a new, chip‐based strategy for the automated analysis of cancer cells. The nanoparticle‐based, multi‐marker approach exploits the direct electrochemical oxidation of metal nanoparticles (MNPs) to report on the presence of specific surface markers. The electrochemical assay allows simultaneous detection of multiple different biomarkers on the surfaces of cancer cells, enabling discrimination between cancer cells and normal blood cells. Through multiplexing, it further enables differentiation among distinct cancer cell types. We showcase the technology by demonstrating the detection of cancer cells spiked into blood samples.  相似文献   

4.
Photolysis of organic solvent soluble aryl azide‐modified gold nanoparticles (N3‐AuNPs) with a core size of 4.6±1.6 nm results in the generation of interfacial reactive nitrene intermediates. The high reactivity of the nitrenes is utilized to tether the AuNP to the native surface of carbon nanotubes, and reduce graphene oxide and micro‐diamond powder, likely via addition to π‐conjugated carbon skeleton or insertion into the functionalities at the surface, to yield the desired hybrid material without the need for pretreatment of the surface. The AuNP‐covalent hybrid materials are robust in that they survive vigorous washing and sonication. In the absence of photolysis no attachment occurs with the same N3‐AuNP. The nanohybrid AuNP‐nanohybrid materials are characterized using a combination of TEM, powder XRD, XPS and UV/Vis and IR spectroscopies. All of the characterization studies confirm the uniform incorporation of the AuNP on the irradiated substrates.  相似文献   

5.
The assembly of gold nanoparticles (AuNPs) on a hydrogenated Si(100) surface, mediated by a series of hierarchical and reversible complexation processes, is reported. The proposed multi‐step sequence involves a redox‐active ditopic guest and suitable calix[n]arene‐based hosts, used as functional organic monolayers of the two inorganic components. Surface reactions and controlled release of AuNPs have been monitored by application of XPS, atomic force microscopy (AFM), field‐emission scanning electron microscopy (FESEM) and electrochemistry.  相似文献   

6.
Rational and generalisable methods for engineering surface functionality will be crucial to realising the technological potential of nanomaterials. Nanoparticle‐bound dynamic covalent exchange combines the error‐correcting and environment‐responsive features of equilibrium processes with the stability, structural precision, and vast diversity of covalent chemistry, defining a new and powerful approach for manipulating structure, function and properties at nanomaterial surfaces. Dynamic covalent nanoparticle (DCNP) building blocks thus present a whole host of possibilities for constructing adaptive systems, devices and materials that incorporate both nanoscale and molecular functional components. At the same time, DCNPs have the potential to reveal fundamental insights regarding dynamic and complex chemical systems confined to nanoscale interfaces.  相似文献   

7.
银纳米修饰电极的制备及电化学行为   总被引:7,自引:0,他引:7       下载免费PDF全文
金属纳米粒子由于其小的体积和大的比表面积而具有独特的电子、光学和异相催化特性,是目前表面纳米工程及功能化纳米结构制备的一种理想研究对象[1]。银纳米粒子可广泛应用于催化剂材料、电池的电极材料、低温导热材料和导电材料等,成为近年来人们研究的热点[2,3]。在电化学方面,银纳米粒子具有比其他纳米粒子更为优异的导电性能和电催化性能。因此,研究银纳米粒子修饰电极有重要的应用价值和前景[4]。1实验部分1.1仪器CHI660电化学工作站(USA);TU-1901型双光束紫外可见分光光度计(北京普析通用仪器公司);KQ-100型超声清洗器(昆山市超声…  相似文献   

8.
We report the direct solution‐phase characterization of individual gold‐core silver‐shell nanoparticles through an electrochemical means, with selectivity achieved between the core and shell components based on their different redox activities. The electrochemically determined core–shell sizes are in excellent agreement with electron microscopy‐based results, successfully demonstrating the electrochemical characterization of individual core–shell nanoparticles.  相似文献   

9.
《Analytical letters》2012,45(17):2813-2828
The goal of this study was to develop a suitable electroanalytical method for the determination of primary compounds in the extracts of capsaicin and silymarin. For this purpose, a glassy carbon electrode immobilized with multiwalled carbon nanotubes decorated with gold nanoparticles was characterized by high resolution transmission electron microscopy and attenuated total reflectance infrared spectroscopy. The developed electrochemical sensor had a linear dynamic range from 0.15 to 35.0 µM. In addition, the limits of quantification for silymarin and capsaicin with the gold nanoparticle decorated multiwalled carbon nanotubes were 0.1564 and 0.2761 µg L?1 with relative standard deviations (n = 3) of 1.65% and 2.09% and equivalent mass percentages of 93.33% and 62.02%, respectively. The methodology may be employed for the determination of capsaicin and silymarin in pharmaceutical and food products.  相似文献   

10.
This paper presents a theoretical study of electrochemical affinity biosensors for the detection of DNA/protein that utilize nanoparticle labels for signal amplification. This study analyzes the effects of binding and mass transport of the analytes on biosensor performance by using numerical simulations. Four cases were considered: 1) nanoparticles used to increase the loading of an electroactive species, or used as catalysts under pseudo‐first‐order conditions; 2) nanoparticles used as ultramicroelectrode arrays for the electrolysis of large concentrations of substrate; 3) nanoparticles used as seeds to deposit electrochemically detectable species; and 4) nanoparticles used to mediate the deposition of electrocatalysts. By using nanoparticle labels, high sensitivity is possible under all conditions considered. However, theoretical findings suggested that nonspecific adsorption could be more problematic in cases 2–4 due to the mismatch between the chemistry of surface binding and the principle of signal amplification that originates from the effect of mass transport. Under these conditions, any given signal would plateau at a much lower analyte concentration, well before the analyte binding had actually reached a plateau. Views on possible solutions to the above limitations are also presented.  相似文献   

11.
《化学:亚洲杂志》2017,12(18):2434-2440
Collisions of silver nanoparticles (NPs) with a more electrocatalytic gold or platinum ultramicroelectrode (UME) surface have been observed by using an electrochemical method. Depending on the applied potential to the UME, the current response to the collision of Ag NPs on the UME resulted in various shape changes. A staircase decrease, a blip decrease, and a blip increase of the hydrazine oxidation current were obtained at an applied potential of 0.33, 0.80, and 1.3 V, respectively. Different collision behaviors of Ag NPs on the UME surface were suggested for each shape of current response. Ag NP attachment, which hindered the diffusion flux to the UME, caused a staircase decrease of the electrocatalytic current. Instantaneous blocking of the hydrazine oxidation by Ag NP collision and, following recovery of the current by means of oxidation of Ag NP, caused a blip decrease of the electrocatalytic current. The formation of a higher oxidation state of Ag on the Ag NP and its electrocatalytic hydrazine oxidation resulted in a blip increase of the electrocatalytic current. The analysis of the current response of a single NP collision experiment can be a useful tool to understand the various behaviors of NPs on the electrode surface.  相似文献   

12.
利用混合自组装的方式,将Mb功能化纳米金(Mb-AuNPs-MUA)修饰在金电极表面,以制备出检测超氧阴离子无电子媒介体生物传感器.采用UV-Vis考察修饰纳米团簇的相关特征,利用修饰电极检测DMSO/NaOH体系产生的超氧阴离子.试验结果表明:该修饰电极对超氧阴离子的歧化反应具有显著的催化活性,计算出异相电子传递速率常数(Ks)为0.041 cm/s,电子转移系数(α)为0.435.在0.06~0.2 μmol/L范围内,超氧阴离子浓度与峰电流呈良好的线性关系,相关系数R2为0.9719,方法检出限(LOD)为1.129×10-3 μmol/L(S/N=3)、3.683×10-3 μmol/L(S/N=10),精密度试验测定得相对标准偏差(RSD,n=9)为3.83%.  相似文献   

13.
14.
A novel sensitive electrochemical immunoassay with colloidal gold as the antibody labeling tag and subse-quent signal amplification by silver enhancement is described. Colloidal gold was treated by a light-sensitive silver enhancement system which made silver deposit on the surface of colloidal gold(form Au/Ag core-shell structure), followed by the release of the metallic silver atoms anchored on the antibody by oxidative dissolu-tion of them in an acidic solution and the indirect determination of the dissolved Ag ions by anodic stripping voltamrnetry(ASV) at a carbon fiber microelectrode. The electrochemical signal is directly proportional to the amount of analyte(goat IgG) in the standard or a sample, The method was evaluated by means of a non-competitive heterogeneous immunoassay of immunoglobulin G(IgG) with a concentration as low as 0. 2 ng/mL. The high performance of the method is related to the sensitive ASV determination of silver( I ) at a car-bon fiber microelectrode and to the release of a large number of Ag^ ions from each silver shell anchored on the analyte (goat IgG).  相似文献   

15.
A carbon molecular wire electrode was fabricated using diphenylacetylene as the modifier and gold nanoparticles were electrodeposited on the surface. The morphology and electrochemical properties of this modified electrode were investigated by scanning electron microscopy and electrochemical impedance spectroscopy. Two well-defined peaks for metol appeared using this gold nanoparticle-modified carbon molecular wire electrode by cyclic voltammetry with a high current response. These results demonstrate a synergistic effect between the gold nanoparticles and the carbon molecular wire electrode resulting in a rapid electrochemical reaction. The electrochemical conditions for metol were optimized on the modified electrode and a detection limit of 0.64?µmol/L and a linear dynamic range between 2.0 to 800.0?µmol/L were obtained. This modified electrode provided good selectivity, high sensitivity, and acceptable reproducibility, demonstrating promise for the determination of metol in the water.  相似文献   

16.
Attractive combination: Biopolymer‐modified nanoparticles which combine magnetic properties with biocompatibility are prepared and delivered following a three‐step strategy (see figure): i) Adsorption of thiol‐capped metal nanoparticles on graphite, ii) electrochemical modification, iii) potential‐induced delivery of the modified nanoparticles to the electrolyte.

  相似文献   


17.
We report a rapid and simple method for sensing estradiol by electro‐oxidation on a multi‐walled carbon nanotube (MWCNT) and gold nanoparticle (AuNP) modified glassy carbon electrode (GCE). Compared with a bare GCE, AuNP/GCE and MWCNT/GCE, the composite modified GCE shows an enhanced response to estradiol in 0.1 M phosphate buffer solution. Experimental parameters, including pH and accumulation time for estradiol determination were optimised at AuNP/MWCNT/GCE. A pH of 7.0 was found to be optimum pH with an accumulation time of 5 minutes. Estradiol was determined by linear sweep voltammetry over a dynamic range up to 20 %mol L?1 and the limit of detection was estimated to be 7.0×10?8 mol L?1. The sensor was successfully applied to estradiol determination in tap water and waste water.  相似文献   

18.
The sensing and accurate determination of antibiotics in various environments represents a big challenge, mainly owing to their widespread use in medicine, veterinary practice, and other fields. Therefore, a new, simple electrochemical sensor for the detection of antibiotic chloramphenicol (CAP) has been developed in this work. The amplification strategy of the sensor is based on the application of magnetite nanostructures stabilized with carboxymethyl cellulose (Fe3O4‐CMC) and decorated with nanometer‐sized Au nanoparticles (NPs) (Fe3O4‐CMC@Au). In this case, CMC serves as a stabilizing agent, preventing the aggregation of Fe3O4 NPs, and hence, enabling the kinetic barrier for electron transport to be overcome, and the Au NPs serve as an electron‐conducting tunnel for better electron transport. As a proof of concept, the developed nanosensor is used for the detection of CAP in human urine samples, giving a recovery value of around 97 %, which indicates the high accuracy of the as‐prepared nanosensor.  相似文献   

19.
20.
王杰琼  张旺  陈铭  刁国旺 《电化学》2012,18(1):68-72
应用循环伏安法研究了吡虫啉(IDP)在玻碳电极的电化学行为. 结果表明:IDP的还原反应是不可逆的,且受扩散控制,电子转移数4,扩散系数DR 2.44×10-6cm2?s-1,反应活化能Ed 9.33 kJ?mol-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号