首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
巯基乙酸自组装膜DNA电化学传感器对转基因NOS的定量检测   总被引:5,自引:1,他引:5  
以转基因植物中常用的根癌农杆菌终止子(NOS)为检测对象, 将巯基乙酸自组装于金电极表面形成巯基乙酸自组装单分子膜, 再利用乙基-(3-二甲基氨丙基)碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)的活化作用将NOS探针ssDNA序列固定于金电极表面形成NOS电化学生物传感器, 以亚甲基蓝(MB)为杂交指示剂, 对NOS靶基因相关序列进行了定量检测.  相似文献   

2.
Based on graphene (GR), TiO2 nanorods, and chitosan (CTS) nanocomposite modified carbon ionic liquid electrode (CILE) as substrate electrode, a new electrochemical DNA biosensor was effectively fabricated for the detection of the transgenic soybean sequence of MON89788. By using methylene blue (MB) as hybridization indicator for monitoring the hybridization with different ssDNA sequences, the differential pulse voltammetric response of MB on DNA modified electrodes were recorded and compared. Due to the synergistic effects of TiO2 nanorods and GR on the electrode surface, the electrochemical responses of MB were greatly increased. Under optimal conditions the differential pulse voltammetric response of the target ssDNA sequence could be detected in the range from 1.0×10?12 to 1.0×10?6 mol/L with a detection limit of 7.21×10?13 mol/L (3σ). This electrochemical DNA biosensor was further applied to the polymerase chain reaction (PCR) product of transgenic soybeans with satisfactory results.  相似文献   

3.
The human interleukine‐2 gene (hIL‐2) is detected with a label‐free DNA hybridization biosensor using a non‐inosine substituted probe. The sensor relies on the immobilization of a 20‐mer antisense single strand oligonucleotide (chIL‐2) related to the human interleukine‐2 gene on the pencil graphite electrode (PGE) as a probe. The guanine oxidation signal was monitored using anodic differential pulse voltammetry (ADPV). The electrochemical pretreatment of the polished PGE at 1.80 V for 5 min is suggested. Then, 5 min immobilization at 0.50 V was found as the optimum condition for immobilization of the probe. The electrochemical detection of hybridization between chIL‐2 and hIL‐2 as a target was accomplished. The selectivity of the biosensor was studied using noncomplementary oligonucleotides. Diagnostic performance of the biosensor is described and the detection limit is found 36 pg/μL.  相似文献   

4.
《Analytical letters》2012,45(3):467-482
Abstract

This paper describes a reagentless electrochemical DNA biosensor applied to the detection of human immunodeficiency virus (HIV) sequences based on electrochemical impedance spectroscopy (EIS). The novel DNA biosensor has been elaborated by means of an opposite‐charged adsorption Au‐Ag nanocomposite to a conductive polymer polypyrrole (PPy) modified platinum electrode (Pt) and self‐assembly the mercapto oligonucleotide probes onto the surface of modified electrode via the nanocomposite. The duplex formation was detected by measuring the electrochemical impedance signal of nucleic acids in phosphate buffer solution (PBS). Such response is based on the concomitant conductivity changes of the PPy film and nanocomposite. The reagentless scheme has been characterised using 21‐mer synthetic oligonucleotides as models: parameters affecting the hybridization assay were explored and optimized. The detection limit is 5.0×10?10 M of target oligonucleotides at 3σ. The potential for development of reagentless DNA hybridization analysis in the clinical diagnosis is being pursued.  相似文献   

5.
A mixed‐ligands copper complex [Cu(phendione)(DAP)]SO4 (phendione=1,10‐phenanthroline‐5,6‐dione, DAP=2,3‐diaminophenazine) was synthesized. Cyclic voltammetry showed that the complex underwent an obvious decrease of redox peak currents and positive shift of formal potential after interaction with double‐stranded DNA (dsDNA), suggesting that the copper complex behaved as a typical metallointercalator for dsDNA, The recognition properties of the copper complex to single‐stranded DNA (ssDNA) and dsDNA were assessed using surface‐based electrochemical methods and the results suggested that the complex had obviously different redox signals at ssDNA and dsDNA modified electrodes. The copper complex was further used as an electroactive indicator for the detection of cauliflower mosaic virus (CaMV) 35S promoter gene.  相似文献   

6.
In this work a partially reduced graphene oxide (p‐RGO) modified carbon ionic liquid electrode (CILE) was prepared as the platform to fabricate an electrochemical DNA sensor, which was used for the sensitive detection of target ssDNA sequence related to transgenic soybean A2704‐12 sequence. The CILE was fabricated by using 1‐butylpyridinium hexafluorophosphate as the binder and then p‐RGO was deposited on the surface of CILE by controlling the electroreduction conditions. NH2 modified ssDNA probe sequences were immobilized on the electrode surface via covalent bonds between the unreduced oxygen groups on the p‐RGO surface and the amine group at the 5′‐end of ssDNA, which was denoted as ssDNA/p‐RGO/CILE and further used to hybridize with the target ssDNA sequence. Methylene blue (MB) was used as electrochemical indicator to monitor the DNA hybridization. The reduction peak current of MB after hybridization was proportional to the concentration of target A2704‐12 ssDNA sequences in the range from 1.0×10?12 to 1.0×10?6 mol/L with a detection limit of 2.9×10?13 mol/L (3σ). The electrochemical DNA biosensor was further used for the detection of PCR products of transgenic soybean with satisfactory results.  相似文献   

7.
The short sequence related to hepatitis C virus (HCV1) is detected by a label‐free DNA hybridization biosensor. The sensor relies on the immobilization of a 20‐mer oligonucleotide containing 2 guanine and 11 cytosine bases denoted PHCV1 as probe on the pencil graphite electrode (PGE). The hybridization event was monitored by differential pulse voltammetry (DPV) using the guanine signal. The selectivity of the biosensor was studied using some noncomplementary oligonucleotides. Diagnostic performance of the biosensor is described and the detection limit was found to be 6.5 nM.  相似文献   

8.
《Electroanalysis》2005,17(23):2182-2189
An electrochemical DNA biosensor was fabricated by immobilizing DNA probe on aluminum ion films that were electrodeposited on the surface of the stearic acid‐modified carbon paste electrode (CPE). DNA immobilization and hybridization were characterized with cyclic voltammetry (CV) by using methylene blue (MB) as indicator. MB has a couple of well‐defined voltammetric redox peaks at the CPE. The currents of redox peaks of MB decreased after depositing aluminum ion films on the CPE (Al(III)/CPE) and increased dramatically after immobilizing DNA probe (ssDNA/Al(III)/CPE). Hybridization of DNA probe led to a marked decrease of the peak currents of MB, which can be used to detect the target single‐stranded DNA. The conditions for the preparation of Al(III)/CPE, and DNA immobilization and hybridization were optimized. The specific sequences related to bar transgene in the transgenic corn and the PCR amplification of CP4 epsps gene from the sample of transgenic roundup ready soybean were detected by differential pulse voltammetry (DPV) with this new electrochemical DNA biosensor. The difference between the peak currents of MB at ssDNA/Al(III)/CPE and that at hybridization DNA modified electrode (dsDNA/Al(III)/CPE) was applied to determine the specific sequence related to the target bar gene with the dynamic range comprised between 1.0×10?7 mol/L to 1.0×10?4 mol/L. A detection limit of 2.25×10?8 mol/L of oligonucleotides can be estimated.  相似文献   

9.
In spite of the extensive attention paid on the development of various DNA detection strategies, very few studies have been reported regarding direct detection of DNA sequence and mutation in dsDNA. Here, we describe the feasibility of detection and discrimination of target DNA sequences and single base mutations (SBM) directly in double‐stranded oligonucleotides and PCR products without the need for denaturation of the target dsDNA samples. This goal was achieved by employing a peptide nucleic acid (PNA) chain, self‐assembled on the gold electrode as a probe, which binds to dsDNA and forms PNA‐dsDNA hybrid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号