首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two methods were assessed for the generation of common N‐heterocyclic carbenes (NHCs) from stable imidazol(in)ium precursors using convenient and straightforward continuous‐flow setups with either a heterogeneous inorganic base (Cs2CO3 or K3PO4) or a homogeneous organic base (KN(SiMe3)2). In‐line quenching with carbon disulfide revealed that the homogeneous strategy was most efficient for the preparation of a small library of NHCs. The generation of free nucleophilic carbenes was next telescoped with two benchmark NHC‐catalyzed reactions; namely, the transesterification of vinyl acetate with benzyl alcohol and the amidation of N‐Boc‐glycine methyl ester with ethanolamine. Both organocatalytic transformations proceeded with total conversion and excellent yields were achieved after extraction, showcasing the first examples of continuous‐flow organocatalysis with NHCs.  相似文献   

2.
3.
A new polymerization termed proton (H)‐transfer polymerization (HTP) has been developed to convert dimethacrylates to unsaturated polyesters. HTP is catalyzed by a selective N‐heterocyclic carbene capable of promoting intermolecular Umpolung condensation through proton transfer and proceeds through the step‐growth propagation cycles via enamine intermediates. The role of the added suitable phenol, which is critical for achieving an effective HTP, is twofold: shutting down the radically induced chain‐growth addition polymerization under HTP conditions (typically at 80–120 °C) and facilitating proton transfer after each monomer enchainment. The resulting unsaturated polyesters have a high thermal stability and can be readily cross‐linked to robust polyester materials.  相似文献   

4.
5.
6.
A straightforward procedure to carry out the enantioselective benzoin reaction between aldehydes and ynones by employing a chiral N‐heterocyclic carbene (NHC) as catalyst was developed. Under the optimized reaction conditions, these ynones undergo a clean and selective 1,2‐addition with the catalytically generated Breslow intermediate, not observing any byproduct arising from competitive Stetter‐type reactivity. This procedure allows the preparation of tertiary alkynyl carbinols as highly enantioenriched materials, which have the remarkable potential to be used as chiral building blocks in organic synthesis.  相似文献   

7.
N‐Heterocyclic carbene (NHC) catalysis has emerged as a powerful stratagem in organic synthesis to construct complex molecules primarily by polarity reversal (umpolung) approaches. These unique Lewis bases have been used to generate acyl anions, enolates, and homoenolates in catalytic fashion. Recently, a new strategy has emerged that dramatically expands the synthetic utility of carbene catalysis by leveraging additional activation modes: cooperative catalysis. The careful selection and balance of cocatalysts have led to enhanced reactivity, increased yields, and improved stereoselectivity. In certain cases, these catalytic additives have changed the regioselectivity or diastereoselectivity. This Minireview highlights new advances in NHC cooperative catalysis and surveys the evolution of this field.  相似文献   

8.
The combination of light activation and N‐heterocyclic carbene (NHC) organocatalysis has enabled the use of acid fluorides as substrates in a UVA‐light‐mediated photochemical transformation previously observed only with aromatic aldehydes and ketones. Stoichiometric studies and TD‐DFT calculations support a mechanism involving the photoactivation of an ortho‐toluoyl azolium intermediate, which exhibits “ketone‐like” photochemical reactivity under UVA irradiation. Using this photo‐NHC catalysis approach, a novel photoenolization/Diels–Alder (PEDA) process was developed that leads to diverse isochroman‐1‐one derivatives.  相似文献   

9.
The reaction of 1,3‐diisopropylimidazolin‐2‐ylidene (iPr2Im) with diphenyldichlorosilane (Ph2SiCl2) leads to the adduct (iPr2Im)SiCl2Ph2 1 . Prolonged heating of isolated 1 at 66 °C in THF affords the backbone‐tethered bis(imidazolium) salt [(aHiPr2Im)2SiPh2]2+ 2 Cl? 2 (“a” denotes “abnormal” coordination of the NHC), which can be synthesized in high yields in one step starting from two equivalents of iPr2Im and Ph2SiCl2. Imidazolium salt 2 can be deprotonated in THF at room temperature using sodium hydride as a base and catalytic amounts of sodium tert‐butoxide to give the stable N‐heterocyclic dicarbene (aiPr2Im)2SiPh2 3 , in which two NHCs are backbone‐tethered with a SiPh2 group. This easy‐to‐synthesize dicarbene 3 can be used as a novel ligand type in transition metal chemistry for the preparation of dinuclear NHC complexes, as exemplified by the synthesis of the homodinuclear copper(I) complex [{a(ClCu?iPr2Im)}2SiPh2] 4 .  相似文献   

10.
An N‐heterocyclic carbene (NHC) catalyzed dihalomethylenation of enals is described. It is a rare example of merging NHC catalysis with single‐electron chemistry, a challenging topic with limited previous success. The versatile carbon‐centered trihalomethyl radicals have been demonstrated, for the first time, to be compatible with an NHC‐bound intermediate, thus leading to efficient and regioselective intermolecular C?C bond formation. The mild process provides straightforward access to unsaturated δ,δ‐dihalo esters.  相似文献   

11.
12.
N‐heterocyclic carbene (NHC) catalysis has emerged as a powerful strategy in organic synthesis. In recent years a number of reviews have been published on NHC‐catalyzed transformations involving Breslow intermediates, acyl azoliums, α,β‐unsaturated acyl azoliums, homoenolate equivalents, and azolium enolates. However, the azolium dienolate intermediates generated by NHCs have been employed in asymmetric synthesis only very recently, especially in cycloadditions dealing with remote functionalization. This Minireview highlights all the developments and the new advances in NHC‐catalyzed asymmetric cycloaddition reactions involving azolium dienolate intermediates.  相似文献   

13.
The bonding strength of N‐heterocyclic carbene (NHC) ligands to a neutral AuCl test moiety are compared to that of several phosphanes and other ligands. Of the ligands studied, the NHCs clearly form the strongest bonds to AuCl. A simplified triangular CN2 model is also introduced for the NHCs.  相似文献   

14.
15.
The reaction of the 2‐(trimethylsilyl)imidazolium triflate 9 with diarylboron halides (4‐R‐C6H4)2BX (R=H, X=Br; R=CH3, X=Cl; R=CF3, X=Cl) afforded the NHC‐stabilized borenium cations 10 a – c . Cyclic voltammetry revealed a linear correlation between the Hammett parameter σ p of the para substituent and the half‐wave potential. Chemical reduction with decamethylcobaltocene, [(C5Me5)2Co], furnished the corresponding radicals 11 a – c ; their characterization by EPR spectroscopy confirmed the paramagnetic character of 11 a – c , with large hyperfine coupling constants to the boron isotopes 11B and 10B, while delocalization of the unpaired electron into the NHC is negligible. DFT calculations of the percentage of spin density distribution between the carbene (NHC) and the boryl fragments (BR2) revealed for 11 a – c a spin density ratio (BR2/NHC) of ca. 9:1, which underlines their distinct boryl radical character. The molecular structure of the most stable species 11 c was established by X‐ray diffraction analysis.  相似文献   

16.
17.
The NHC–borane adduct (IBn)BH3 ( 1 ) (NHC= N‐heterocyclic carbene; IBn=1,3‐dibenzylimidazol‐2ylidene) reacts with [Ph3C][B(C6F5)4] through sequential hydride abstraction and dehydrogenative cationic borylation(s) to give singly or doubly ring closed NHC–borenium salts 2 and 3 . The planar doubly ring closed product [C3H2(NCH2C6H4)2B][B(C6F5)4] is resistant to quaternization at boron by Et2O coordination, but forms classical Lewis acid–base adducts with the stronger donors Ph3P, Et3PO, or 1,4‐diazabicyclo[2.2.2]octane (DABCO). Treatment of 3 with tBu3P selectively yields the unusual oligomeric borenium salt trans‐[(C3H2(NCH2C6H4)2B)2(C3H2(NCHC6H4)2B)][B(C6F5)4] ( 7 ).  相似文献   

18.
Bifunctional N‐heterocyclic carbenes with a free hydroxy group are demonstrated as efficient catalysts for the [3+4] annulation of enals with aurones to give the corresponding benzofuran‐fused ε‐lactones in good yields with good diastereoselectivities and excellent enantioselectivities. Control experiments reveal that the [3+4] cycloadducts are kinetically favored and could be transformed to the thermodynamically favored [3+2] cycloadducts with a non‐bifunctional NHC catalyst.  相似文献   

19.
Herein, an efficient route to enantioenriched organosilanes, containing two consecutive stereogenic centers, from enals and β‐silyl enones under carbene organocatalysis is described. Under mild reaction conditions, this transition‐metal‐free strategy exhibits a broad substrate scope, and excellent diastereo‐ and enantioselectivity.  相似文献   

20.
One of the most challenging questions in the Lewis base organocatalyst field is how to predict the most electrophilic carbon for the complexation of N‐heterocyclic carbene (NHC) and reactant. This study provides a valuable case for this issue. Multiple mechanisms (A, B, C, D, and E) for the intramolecular cyclization of aldimine catalyzed by NHC were investigated by using density functional theory (DFT). The computed results reveal that the NHC energetically prefers attacking the iminyl carbon (AIC mode, which is associated with mechanisms A and C) rather than attacking the olefin carbon (AOC mode, which is associated with mechanisms B and D) or attacking the carbonyl carbon (ACC mode, which is associated with mechanism E) of aldimine. The calculated results based on the different reaction models indicate that mechanism A (AIC mode), which is associated with the formation of the aza‐Breslow intermediate, is the most favorable pathway. For mechanism A, there are five steps: (1) nucleophilic addition of NHC to the iminyl carbon of aldimine; (2) [1,2]‐proton transfer to form an aza‐Breslow intermediate; (3) intramolecular cyclization; (4) the other [1,2]‐proton transfer; and (5) regeneration of NHC. The analyses of reactivity indexes have been applied to explain the chemoselectivity, and the general principles regarding the possible mechanisms would be useful for the rational design of NHC‐catalyzed chemoselective reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号