首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ZnO nanoparticle quantum dots (QDs)/poly(methyl methacrylate) (PMMA) composites are synthesized by conventional radical polymerization in the presence of 3-(trimethoxysilyl)propylmethacrylate (TPM)-modified ZnO nanoparticle QDs. Although unmodified ZnO nanoparticle QDs were precipitated in tetrahydrofuran (THF) and show only weak emissions under UV irradiation, ZnO nanoparticle QDs/PMMA composite is well dispersed in THF and shows high emissions. TPM acts as the stabilizer and promotes the compatibility between the ZnO nanoparticle QDs and the PMMA matrix. After evaporation of THF from the ZnO nanoparticle QDs/PMMA composite solution, transparent polymeric hybrid films of ZnO nanoparticle QDs and PMMA are obtained. These polymeric hybrid films are characterized by photoluminescence (PL) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), and thermogravimetric analysis. The hybrid film exhibited a high quantum yield and PL emission under ultraviolet excitation. PL emission has been successfully tuned from blue to yellow.  相似文献   

2.
Gold nanoparticles of 10–24 and 5–8 nm in size were obtained by chemical citrate reduction and UV photoreduction, respectively, on acid‐treated multiwalled carbon nanotubes (MWCNTs) and on ZnO/MWCNT composites. The shape and size of the deposited Au nanoparticles were found to be dependent upon the synthetic method used. Single‐crystalline, hexagonal gold particles were produced in the case of UV photoreduction on ZnO/MWCNT, whereas spherical Au particles were deposited on MWCNT when the chemical citrate reduction method was used. In the UV photoreduction route, n‐doped ZnO serves as the e? donor, whereas the solvent is the hole trap. All materials were fully characterised by UV/Vis spectroscopy, scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy, Raman spectroscopy and BET surface analysis. The catalytic activity of the composites was studied for the selective hydrogenation of α,β‐unsaturated carbonyl compound 3,7‐dimethyl‐2,6‐octadienal (citral). The Au/ZnO/MWCNT composite favours the formation of unsaturated alcohols (selectivity=50 % at a citral conversion of 20 %) due to the presence of single‐crystalline, hexagonal gold particles, whereas saturated aldehyde formation is favoured in the case of the Au/MWCNT nanocomposite that contains spherical gold particles.  相似文献   

3.
Thin films of polydimethylsiloxane (PDMS) and ZnO quantum dots (QDs) were built up as multilayers by spin-coating. The films are characterized by a UV-blocking ability that increases with increasing number of bilayers. Photoluminescence (PL) emission spectra of the thin films occur at 522 nm, which is the PL wavelength of the ZnO QDs dispersion, but with a lower intensity and a quantum yield (QY) less than 1% that of the dispersion. Cross-linking has introduced new features to the absorption spectra in that the absorption peak was absent. These changes were attributed to the morphological and structural changes revealed by transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR), respectively. TEM showed that the ZnO particle size in the film increased from 7 (±2.7) nm to 16 (±7.8) upon cross-linking. The FTIR spectra suggest that ZnO QDs are involved in the cross-linking of PDMS and that the surface of the ZnO QDs has been chemically modified.  相似文献   

4.
The photoluminescence (PL) of CdSe quantum dots (QDs) that form stable nanocomposites with polymer liquid crystals (LCs) as smectic C hydrogen‐bonded homopolymers from a family of poly[4‐(n‐acryloyloxyalkyloxy)benzoic acids] is reported. The matrix that results from the combination of these units with methoxyphenyl benzoate and cholesterol‐containing units has a cholesteric structure. The exciton PL band of QDs in the smectic matrix is redshifted with respect to QDs in solution, whereas a blueshift is observed with the cholesteric matrix. The PL lifetimes and quantum yield in cholesteric nanocomposites are higher than those in smectic ones. This is interpreted in terms of a higher order of the smectic matrix in comparison to the cholesteric one. CdSe QDs in the ordered smectic matrix demonstrate a splitting of the exciton PL band and an enhancement of the photoinduced differential transmission. These results reveal the effects of the structure of polymer LC matrices on the optical properties of embedded QDs, which offer new possibilities for photonic applications of QD–LC polymer nanocomposites.  相似文献   

5.
We reported the functionalization of multiwalled carbon nanotube (MWCNT) with 4‐aminobenzoic acid by a “direct” Friedel–Crafts acylation reaction in a mild polyphosphoric acid (PPA)/phosphorous pentoxide (P2O5) medium. The resulting 4‐aminobenzoyl‐functionalized MWCNT (AF‐MWCNT) was used as a platform for the grafting of polypyrrole (PPy) in ammonium persulfate (APS)/aqueous hydrochloric acid solution to produce PPy‐grafted MWCNT (PPy‐g‐MWCNT) composite. After dedoping with alkaline treatment, PPy‐g‐MWCNT displayed 20 times higher electrical conductivity than that of PPy. The current density and cycle stability of PPy‐g‐MWCNT composite were also remarkably improved compared with those of PPy homopolymer, suggesting that an efficient electron transfer between PPy and MWCNT was possible through covalent links. In addition, PPy‐g‐MWCNT displayed high electrocatalytic activity for oxygen reduction reaction (ORR). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Phase‐stable CsSnxPb1?xI3 perovskite quantum dots (QDs) hold great promise for optoelectronic applications owing to their strong response in the near‐infrared region. Unfortunately, optimal utilization of their potential is limited by the severe photoluminescence (PL) quenching, leading to extremely low quantum yields (QYs) of approximately 0.3 %. The ultra‐low sodium (Na) doping presented herein is found to be effective in improving PL QYs of these alloyed QDs without alerting their favourable electronic structure. X‐ray photoelectron spectroscopy (XPS) studies suggest the formation of a stronger chemical interaction between I? and Sn2+ ions upon Na doping, which potentially helps to stabilize Sn2+ and suppresses the formation of I vacancy defects. The optimized PL QY of the Na‐doped QDs reaches up to around 28 %, almost two orders of magnitude enhancement compared with the pristine one.  相似文献   

7.
Graphene oxide/Mg‐doped ZnO/tungsten oxide quantum dots composites (WQGOMZ) were prepared through co‐precipitation method, and were studied by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), Fluorescence spectra (FL), and UV–vis diffuse reflection spectra. Furthermore, the photocatalytic activity of resultant WQGOMZ was evaluated under nature sunlight. Experimental results showed that WO3QDs can remarkably heighten the photocatalytic activity of GOMZ composite, in which is nearly 6.58 times higher than that of GOMZ composite. Simultaneously, WQGOMZ composites possess optical memory ability and maintain high photocatalytic stability for more than 40 days. The enhanced photocatalytic activity and optical memory ability are attributed to the effective synergistic effect between ZnO and WO3QDs.  相似文献   

8.
Despite the bright and tuneable photoluminescence (PL) of semiconductor quantum dots (QDs), the PL instability induced by Auger recombination and oxidation poses a major challenge in single‐molecule applications of QDs. The incomplete information about Auger recombination and oxidation is an obstacle in the resolution of this challenge. Here, we report for the first time that Auger‐ionized QDs beat self‐sensitized oxidation and the non‐digitized PL intensity loss. Although high‐intensity photoactivation insistently induces PL blinking, the transient escape of QDs into the ultrafast Auger recombination cycle prevents generation of singlet oxygen (1O2) and preserves the PL intensity. By the detection of the NIR phosphorescence of 1O2 and evaluation of the photostability of single QDs in aerobic, anaerobic, and 1O2 scavenger‐enriched environments, we disclose relations of Auger ionization and 1O2‐mediated oxidation to the PL stability of single QDs, which will be useful during the formulation of QD‐based single‐molecule imaging tools and single‐photon devices.  相似文献   

9.
ZnO‐graphene composite was synthesized by using graphene oxide (GO), zinc acetate (Zn(CH3COO)2⋅2H2O), sodium hydroxide (NaOH) and ethylene glycol as precursors through a one‐pot hydrothermal process. The concentration of NaOH solution had an important effect on the morphology, defects and spectroscopic characterizations of the ZnO‐graphene composite. With the increase of concentration of NaOH solution, the morphology of the composite changed significantly. The morphological evolution was analyzed through SEM and TEM observations, and the Raman and PL spectral variations were discussed.  相似文献   

10.
《Electroanalysis》2018,30(5):877-885
This work describes for the first time the employment of water soluble GSH‐ZnSe QDs stabilized by XG and MWCNT for electrode modification in the detection of Cd ions in a highly sensitive and selective manner resulting from the unique structure and surface chemistry of the used QDs. The surface of a glassy carbon (GC) electrode was modified through casting a thin layer of multiwalled carbon nanotubes (MWCNT) followed by a complex layer of ZnSe quantum dots (QDs) stabilized by xanthan gum (XG). Due to the electrocatalytic properties of MWCNT and electroanalytical performance of ZnSe‐XG complex, the new modified electrode significantly improves the sensitivity and selectivity of Cd(II) detection and exhibits enhanced performance in comparison to bare GC, ZnSe/GC and ZnSe/MWCNT/GC electrodes. Strong interactions between ZnSe QDs and XG resulting from hydrogen bonding and complexing association led to stabilization of ZnSe QDs and higher affinity towards Cd(II) ions adsorption compared to a ZnSe QDs film alone. The modified electrode showed linear response in a wide concentration range from 100 nM to 5 μM (R2=0.9967) along with a high sensitivity of 156.6 nA ⋅ mol−1 ⋅ L−1 and a low detection limit of 20 nM. The electrode shows high selectivity to Cd with negligible interference from other metal ions and salts.  相似文献   

11.
Precursor of polyimide, polyamic acid has been prepared sucessfully. Acid‐modified carbon nanotube (MWCNT) was grafted with soluble polyimide then was added to the polyamic acid and heated to 300 °C to form polyimide/carbon nanotube composite via imidation. Morphology, mechanical properties and electrical resistivity of the MWCNT/polyimide composites have been studied. Transmission electron microscope microphotographs show that the diameter of soluble polyimide‐grafted MWCNT was increased from 30–60 nm to 200 nm, that is a thickness of 70–85 nm of the soluble polyimide was grafted on the MWCNT surface. PI‐g‐MWCNT was well dispersed in the polymer matrix. Percolation threshold of MWCNT/polyimide composites has been investigated. PI‐g‐MWCNT/PI composites exhibit lower electrical resistivity than that of the acid‐modified MWCNT/PI composites. The surface resistivity of 5.0 phr MWCNT/polyimide composites was 2.82 × 108 Ω/cm2 (PI‐g‐MWCNT) and 2.53 × 109 Ω/cm2 (acid‐modified MWCNT). The volume resistivity of 5.0 phr MWCNT/polyimide composites was 8.77 × 106 Ω cm (PI‐g‐MWCNT) and 1.33 × 1013 Ω cm (acid‐modified MWCNT).Tensile strength and Young's modulus increased significantly with the increase of MWCNT content. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3349–3358, 2007  相似文献   

12.
Two multi‐walled carbon nanotube (MWCNT)‐based nanohybrids, MWCNT–ZnTPP and MWCNT–TPP (TPP=5‐[4‐{2‐(4‐formylphenoxy)‐ ethyloxy}phenyl]‐10,15,20‐triphenylporphyrin, ZnTPP=5‐[4‐{(4‐formylphenyl)ethynyl}phenyl]‐10,15,20‐triphenylporphinatozinc(II)), were prepared directly from pristine MWCNTs through 1,3‐dipolar cycloaddition reactions. Covalent attachment of the porphyrins to the surfaces of the MWCNTs was confirmed by Fourier transform infrared spectroscopy, ultraviolet/visible absorption, fluorescence, Raman, and X‐ray photoelectron spectroscopy, elemental analysis, transmission electron microscopy, and thermogravimetric analysis. Attachment of the porphyrin moieties to the surface of the MWCNTs significantly improves the solubility and ease of processing of these MWCNT–porphyrin composite materials. Z‐scan studies reveal that these MWCNT–porphyrin nanohybrids exhibit enhanced nonlinear optical properties under both nanosecond and picosecond laser pulses at λ=532 nm in comparison with free MWCNTs and the free porphyrin chromophores, whereas superior optical limiting performance was displayed by MWCNT–porphyrin composite materials rather than MWCNTs/ZnTPP and MWCNTs/TPP blends, which is consistent with a remarkable accumulation effect as a result of the covalent linkage between the porphyrin and the MWCNTs.  相似文献   

13.
We report an available approach for quickly fabricating CdS QD‐polymer nanocomposites via frontal polymerization (FP). First, we synthesized (3‐mercaptopropyl)‐1‐trimethoxysilane (MPS)‐capped CdS quantum dots (QDs). With these MPS‐capped CdS QDs containing mercapto groups, MPS‐capped CdS QDs can be easily incorporated into a poly(N‐methylolacrylamide) (PNMA) matrix via FP. A variety of features for preparing QD‐polymer nanocomposites, such as initiator concentration and CdS concentration, were thoroughly investigated. The fluorescence properties of QD‐polymer nanocomposites prepared via FP are comparatively investigated on the basis of ultraviolet–visible (UV–vis) spectra and photoluminescence (PL) spectra. Results show that the PL intensity of QD‐polymer nanocomposites prepared via the FP method is superior to that obtained by the traditional batch polymerization (BP) method. In addition, by measuring the changes of PL intensity of the samples immersed in different concentrations of copper acetate solution, we found the QD‐polymer nanocomposites can be ultrasensitive to copper ions. This FP process can be exploited as a facile and rapid way for synthesis QD‐polymer nanocomposites on a large scale, avoiding the fluorescence quenching of nanocrystals during incorporation nanocrystals into polymer matrices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2170–2177, 2010  相似文献   

14.
Herein, highly luminescent CdSe quantum dots (QDs) with emissions from the blue to the red region of visible light were synthesized by using a simple method. The emission range of the CdSe QDs could be tuned from λ=503 to 606 nm by controlling the size of the CdSe QDs. Two amino acids, L ‐tryptophan (L ‐Trp) and L ‐arginine (L ‐Arg), were used as coating agents. The quantum yield (QY) of CdSe QDs (green color) with an optimized thickness could reach up to 52 %. The structures and compositions of QDs were examined by using X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Optical properties were studied by using UV/Vis and photoluminescence (PL) spectroscopy and a comparison was made between uncoated and coated CdSe QDs. The amino acid‐modified β‐cyclodextrin (CD)‐coated CdSe QDs presented lower cytotoxicity to cells for 48 h. Furthermore, amino acid‐modified β‐CD‐coated green CdSe QDs in HepG2 cells were assessed by using confocal laser scanning fluorescence microscopy. The results showed that amino acid‐modified β‐CD‐coated green CdSe QDs could enter tumor cells efficiently and indicated that biomolecule‐coated QDs could be used as a potential fluorescent probe.  相似文献   

15.
The absorption and photoluminescence (PL) properties of silicon quantum dots (QDs) are greatly influenced by their size and surface chemistry. Herein, we examined the optical properties of three Si QDs with increasing σ–π conjugation length: octyl‐, (trimethylsilyl)vinyl‐, and 2‐phenylvinyl‐capped Si QDs. The PL photon energy obtained from as‐prepared samples decreased by 0.1–0.3 eV, while the PL excitation (PLE) extended from 360 nm (octyl‐capped Si QDs) to 400 nm (2‐phenylvinyl‐capped Si QDs). A vibrational PL feature was observed in all samples with an energy separation of about 0.192±0.013 eV, which was explained based on electron–phonon coupling. After soft oxidization through drying, all samples showed blue PL with maxima at approximately 410 nm. A similar high‐energy peak was observed with the bare Si QD sample. The changes in the optical properties of Si QDs were mainly explained by the formation of additional states arising from the strong σ–π conjugation and QD oxidation.  相似文献   

16.
In this work, zinc oxide (ZnO) nanoparticles (size <10 nm) were formed via precipitation in ethanolic solution. The zinc acetate and lithium hydroxide solutions in ethanol were mixed at 273 K temperatures under vigorous stirring. To study the effect of quantum dot (QD) coverage, we have prepared a colloidal suspension of capped CdSe QDs (size ~5 nm) by chemical route and anchored them to a nanoporous ZnO layer either by direct adsorption or through linker. Here a bifunctional molecule (mercaptopropionic acid, MPA, and thioglycolic acid, TGA) was previously adsorbed on the ZnO surface, which acted as a molecular cable. From TEM/SEM studies, it was observed that direct adsorption of CdSe QDs onto ZnO surface was not efficient. However, the bifunctional linker molecules particularly MPA facilitates binding of CdSe QDs to ZnO; and consequently, interparticle electron transfer is thus facilitated. The use of MPA linker despite of its long carbon chain also aids in the quenching of photoluminescence of CdSe on addition of ZnO in a more systematic manner indicating efficient charge transfer from CdSe into ZnO as compared with the without linker and with linker TGA case, respectively. Due to higher PL quenching and reduction in lifetime values, higher values of Stern–Volmer quenching constants were thus obtained for CdSe–ZnO composites with MPA as compared with TGA linker and without linker case, respectively. Nonlinear Stern–Volmer plots as observed for samples without linker case indicated heterogeneous quenching due to insufficient binding between CdSe QDs and ZnO. By means of spectroscopic (PL, UV–VIS, FTIR) and microscopic (TEM, SEM) techniques, we have demonstrated linker-dependent photosensitization mechanism of ZnO layers with CdSe QDs. Our data thus illustrate that interfacial-electron transfer kinetics in QD–linker–ZnO assemblies are almost independent of the length of alkyl-containing molecular linkers.  相似文献   

17.
Hydrazines are well‐known for their diverse biological properties but especially for their toxicity. An amperometric hydrazine sensor was developed at multi‐walled carbon nanotubes (MWCNT) and iron tetrasulfonated phthalocyanine (FeTsPc) composite modified electrode for the first time. The TEM and UV‐Vis spectroscopy results revealed the successful formation of MWCNT/FeTsPc composite. Compared with the response of MWCNT and FeTsPc modified electrodes, the MWCNT/FeTsPc composite showed enhanced oxidation current response with lower overpotential for hydrazine. Under optimum conditions, the amperometric it response of hydrazine was linear in the concentration range from 100 nM L?1 to 3 μM L?1 with the detection limit of 7.6 nM L?1. The response time of hydrazine was found as 6 s with a high sensitivity of 7.615 μA/μM L?1 cm?2.  相似文献   

18.
How to extend ultraviolet photocatalysts to the visible‐light region is a key challenge for solar‐driven photocatalysis. Herein, we show that ultraviolet ZnO photocatalysts can present high visible‐light photocatalytic activity when combined with CuO quantum dots (QDs; <3 nm). Theoretical analysis demonstrates that the quantum size effect plays a key role in the photoactivity of the CuO/ZnO composite. For CuO QDs smaller than 3 nm, the separated charges could transfer from CuO QDs to the conduction bands of ZnO due to quantum splitting of the CuO energy level and phonon compensation for the difference in the conduction band minimum of CuO and ZnO; however, this process would not occur with the disappearance of the quantum size effect. Further structural analysis demonstrates that interfacial charge separation and transfer between ZnO and CuO dominate the photocatalytic processes instead of a single CuO or ZnO surface. Compared with ZnO? noble metal structures (e.g., ZnO? Ag or ZnO? Au), these ZnO? CuO QD composites present wider absorption bands, higher visible photocatalytic efficiencies, and lower costs.  相似文献   

19.
Highly luminescent thioglycolic acid-capped CdTe-based core/shell quantum dots (QDs) were synthesized through encapsulating CdTe QDs in various inorganic shells including CdS, ZnS and CdZnS. CdTe/CdS core/shell QDs exhibited a significant redshift of emission peaks (a maximum emission peak of 652 nm for the core/shell QDs and 575 nm for CdTe cores) with increasing shell thickness. In contrast, the redshift of photoluminescence (PL) peak wavelength of CdTe/ZnS QDs was less than 15 nm. The PL peak wavelengths of the core/shell QDs depended strongly on core size and shell thickness. The PL quantum yields (QYs) of the CdTe/CdS core/shell QDs are up to 67 % while that of CdTe/ZnS core/shell QDs is 45 %. A composite CdZnS shell made CdTe cores a high PL QY up to 51 % and broadly adjusted PL spectra (a maximum PL peak wavelength of 664 nm). The epitaxial growth of the shell was confirmed by X-ray powder diffraction analysis and luminescence decay experiments. Because of high PL QYs, tunable PL spectra, and low toxicity from a ZnS surface layer, CdTe/CdZnS core/shell QDs will be great potential for bioapplications.  相似文献   

20.
Intensity‐modulated photocurrent spectroscopy and intensity‐modulated photovoltage spectroscopy are employed to measure the dynamics of electron transport and recombination in the ZnO nanowire (NW) array‐ZnO/layered basic zinc acetate (LBZA) nanoparticle (NP) composite dye‐sensitized solar cells (DSSCs). The roles of the vertical ZnO NWs and insulating LBZA in the electron collection and transport in DSSCs are investigated by comparing the results to those in the TiO2–NP, horizontal TiO2–NW and vertical ZnO–NW‐array DSSCs. The electron transport rate and electron lifetime in the ZnO NW/NP composite DSSC are superior to those in the conventional TiO2–NP cell due to the existence of the vertical ZnO NWs and insulating LBZA. It indicates that the ZnO NW/NP composite anode is able to sustain efficient electron collection over much greater thickness than the TiO2–NP cell does. Consequently, a larger effective electron diffusion length is available in the ZnO composite DSSC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号