首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A square‐wave voltammetric method for the determination of boric acid in water has been described based on the new understanding of the electrochemical behavior of boric acid‐Azomethine H complexation. Salicylaldehyde and H‐acid were used as the starting materials of boric acid‐Azomethine H complex and their concentrations were optimized for boric acid determination in water. A glassy carbon electrode, instead of a conventional mercury electrode, was used in the measurement. The detection limit of the proposed method was 0.10 mg B dm?3. The proposed method was successfully used for boric acid determination in the water from a seawater desalination RO plant.  相似文献   

2.
《Analytical letters》2012,45(15):2835-2847
Abstract

A sensitive voltammetric method for the determination of trace boron, based on the formation of the complex of boric acid with 4‐hydroxy‐5‐[salicylideneamino]‐2‐7‐naphthalenedisulfonic acid (azomethine H) is described. The reduction of the boric acid‐azomethine H complex at a hanging mercury drop electrode was exploited by square wave voltammetry (SWV) and cyclic voltammetry to determine boron in natural water samples, which were collected in the regions surrounding the boron mines of Central Anatolia. A reduction peak that belongs to the boric acid‐azomethine H complex at this electrode was observed at ?1.05 V vs. Ag/AgCl/KCl(sat.). The effects of various parameters, such as ligand concentration, boric acid concentration, and formation time of the boric acid‐azomethine H complex, were investigated. Electrochemical experiments were conducted in 1.0 M HOAc/0.5 M NH4OAc buffer at pH of 4.4±0.2. Linear working range was established by regression analysis between 5.0×10?8 M and 1.0×10?4 M. The probable metal cation interferences in water samples were eliminated by adding EDTA (ethylenediaminetetraacetic acid) to the samples. Data obtained using the square wave voltammetric (SWV) technique was compared statistically with inductively coupled plasma mass spectroscopy (ICP‐MS) data. Evaluation of the method based on statistical data was performed and the values of the limit of detection (LOD) and limit of quantitation (LOQ) were found to be 4.17×10?6 M and 1.39×10?5 M, respectively.  相似文献   

3.
Yavuz Yardım 《Electroanalysis》2011,23(10):2491-2497
In the present paper, a sensitive electroanalytical methodology for the determination of capsaicin using adsorptive stripping voltammetry (AdSV) at a boron‐doped diamond (BDD) electrode is presented. The voltammetric results indicate that in the presence of sodium dodecylsulfate (SDS) the BDD electrode remarkably enhances the oxidation of capsaicin which leads to an improvement of the peak current with a shift of the peak potential to less negative values. A linear working range of 0.05 to 6.0 µg mL?1 (0.16–20 µM) with a detection limit of 0.012 µg mL?1 (0.034 µM) has been obtained using BDD electrode by AdSV.  相似文献   

4.
The electrochemical oxidation of ibuprofen at a boron‐doped diamond electrode (BDDE) and its voltammetric determination is reported for the first time. A well‐defined oxidation peak was observed at around 1.6 V in 0.1 mol L?1 H2SO4 solution with 10 % (v/v) ethanol at the BDDE surface activated by either cathodic or anodic pretreatments. A differential‐pulse voltammetric method for the determination of ibuprofen in pharmaceutical formulations was optimized with a detection limit of 5 µmol L?1 and compared with the British Pharmacopeia method.  相似文献   

5.
A new voltammetric procedure for the simultaneous determination of dopamine (DA) and paracetamol (PA) using boron doped diamond electrode modified with Nafion and lead films (PbF/Nafion/BDDE) was investigated. The use of this electrode resolved the overlapped voltammetric waves of DA and PA into well‐defined peaks with peak to peak separation of about 320 mV. Under the optimized experimental conditions in differential pulse voltammetric technique, DA and PA gave a linear response over the ranges 2.0×10?7–1.0×10?4 mol L?1*(R2=0.9996) and 5.0×10?7–1.0×10?3 mol L?1 (R2=0.9979), respectively. The detection limits were found to be 5.4×10?8 mol L?1 for DA and 1.4×10?7 mol L?1 for PA. They are lower, comparable or in some cases a little bit higher than those obtained using other electrochemical sensors. However, the proposed procedure of the sensor preparation is much simpler than procedures described in the literature with a lower detection limit. The proposed procedure was successfully applied to the determination of PA in some commercial pharmaceuticals as well as to the simultaneous determination of DA and PA in human urine, whole blood and serum samples directly without any separation steps.  相似文献   

6.
The voltammetric behavior of 3‐nitrofluoranthene and 3‐aminofluoranthene was investigated in mixed methanol‐water solutions by differential pulse voltammetry (DPV) at boron doped diamond thin‐film electrode (BDDE). Optimum conditions have been found for determination of 3‐nitrofluoranthene in the concentration range of 2×10?8–1×10?6 mol L?1, and for determination 3‐aminofluorathnene in the concentration range of 2×10?7–1×10?5 mol L?1, respectively. Limits of determination were 3×10?8 mol L?1 (3‐nitrofluoranthene) and 2×10?7 mol L?1 (3‐aminofluoranthene).  相似文献   

7.
The present work describes the first electrochemical investigation and a simple, rapid and modification‐free electroanalytical methodology for quantification of hordenine (a potent phenylethylamine alkaloid) using a boron‐doped diamond electrode. At optimized square‐wave voltammetric parameters, the observed oxidation peak current in 0.1 M HClO4 at +1.33 V (vs. Ag/AgCl) increased linearly from 5.0 to 100 μg mL?1 (3.0×10?5–6.1×10?4 M), with detection limit of 1.3 μg mL?1 (7.8×10?6 M). The applicability of the developed method was tested with the determination of hordenine in the commercial dietary supplement formulations.  相似文献   

8.
《Electroanalysis》2017,29(7):1691-1699
The simultaneous voltammetric determination of melatonin (MT) and pyridoxine (PY) has been carried out at a cathodically pretreated boron‐doped diamond electrode. By using cyclic voltammetry, a separation of the oxidation peak potentials of both compounds present in mixture was about 0.47 V in Britton‐Robinson buffer, pH 2. The results obtained by square‐wave voltammetry allowed a method to be developed for determination of MT and PY simultaneously in the ranges 1–100 μg mL−1 (4.3×10−6–4.3×10−4 mol L−1) and 10–175 μg mL−1 (4.9×10−5–8.5×10−4 mol L−1), with detection limits of 0.14 μg mL−1 (6.0×10−7 mol L−1) and 1.35 μg mL−1 (6.6×10−6 mol L−1), respectively. The proposed method was successfully to the dietary supplements samples containing these compounds for health‐caring purposes.  相似文献   

9.
A new electrochemical method was proposed for the determination of trace amounts of proteins based on the cupferron (Cup) and cadmium(II) complex [Cup‐Cd(II)] as the voltammetric probe. In the selected pH 6.5 Britton–Robinson (B–R) buffer solution, Cup can interact with Cd(II) to form a stable complex of [Cup‐Cd(II)], which had a sensitive linear sweep voltammetric reductive peak at ?0.654 V (vs. SCE). The addition of human serum albumin (HSA) into [Cup‐Cd(II)] complex solution could greatly decrease the reductive peak current without the change of the reductive peak potential, which indicated that HSA could interact with [Cup‐Cd(II)] complex to form a supramolecular biocomplex. The interaction mechanism was discussed and the decrease of reductive peak current was proportional to the concentration of HSA, which could be further used for the proteins determination. The optimal conditions of the binding reaction and the electrochemical detection were carefully investigated. Under the optimal conditions a new quantitative determination method for different kinds of proteins such as HSA, bovine serum albumin (BSA) and bovine hemoglobin (BHb) etc. was developed. The proposed method was simple, practical and relatively free from the interferences of coexisting substances, and it was further applied to the samples determination with satisfactory results. The binding constant (βs) and the binding number (m) of HSA with [Cup‐Cd(II)] complex were calculated by the voltammetric data with the results as βs=1.12×106 and m=1.  相似文献   

10.
The electroanalytical performance of bare glassy carbon electrodes (GCE) for the determination of 1‐aminonaphthalene (1‐AN) and 2‐aminonaphthalene (2‐AN) was compared with GCE modified by a Nafion permselective membrane or multiwalled carbon nanotubes and with other types of carbon‐based materials, carbon film and boron doped diamond. Nafion‐modified GCE gave the highest sensitivity and lowest detection limit (0.4 µmol L?1) for differential pulse voltammetric determination of 1‐AN. Electrochemical impedance spectroscopy gave information about the processes at the electrode surface. Simultaneous determination of 1‐AN and 2‐AN in a mixture at GCE and their determination in model samples of river water is presented.  相似文献   

11.
《Electroanalysis》2004,16(8):644-649
A simple indirect method using aluminum chelating drugs as electroactive complexation ligands for the voltammetric determination of aluminum in environmental and biological samples on glassy carbon working electrode is studied. In the range of pH 8–9, desferrioxamine (DFO), 1,2‐dimethy‐3‐hydroxypyrid‐4‐one (Hdmp), 3‐hydroxy‐2‐methyl‐4H‐pyran‐4‐one (Hma) and 2,3‐dihydroxypyridine (DHP) yielded good anodic peaks. It was demonstrated that the decrease of the anodic peak current of the drugs was linear with the increase of aluminum concentration. Among them, Hdmp was found the best complexible ligand and chosen for the voltammetric determination of aluminum with EDTA as chelant, which was used for masking most of the interferences. Under the optimum experimental conditions, the linear range for determination of Al by Hdmp was 5×10?7–3×10?5 mol L?1 Al(III), the detection limit was 2×10?7 mol L?1, and the relative standard deviation for 3×10?6 mol L?1 Al(III) was 2.6% (n=7). The proposed method was applied to the determination of Al in real water samples and biological samples. The Al concentration in serum samples can be measured directly without time‐consuming digestion pretreatment.  相似文献   

12.
The separation system containing thin-film polyamide reverse osmosis membrane (tf-PA RO) of high temperature was studied.In performed laboratory tests, RO silica rejection percentage was over 97%, and boron passage was about 60–65% (molecular weight cut off of 200 or 250 Da) of the solution which contained silica in the range of 1–90 ppm and boron in the range of 7500–15,000 ppm. The separation factor (SF) between boron and silica related to boron concentration could be expressed as the relation, SF = k[boron]0.7. The separation process could be described by a mass balance model. The modeling calculation fitted the experimental results very well, within the acceptable parameters’ errors. It was proposed that the boric acid in a boric acid storage tank (BAST) of one studied pressurized water reactor (PWR) plant could be treated with such tf-PA RO. In the prediction, the silica concentration in it would be removed to about 1 ppm, and that the boron could be reused. The waste amount of boron after such treatment was predicted to be less than 1.5%.  相似文献   

13.
In this study the application of home-made unmodified (GC) and bulk modified boron doped glassy carbon (GCB) electrodes for the voltammetric determination of the linuron was investigated. The electrodes were synthesized with a moderate temperature treatment (1000°C). Obtained results were compared with the electrochemical determination of the linuron using a commercial glassy carbon electrode (GC-Metrohm). The peak potential (E p ) of linuron oxidation in 0.1 mol dm−3 H2SO4 as electrolyte was similar for all applied electrodes: 1.31, 1.34 and 1.28 V for GCB, GC and GC-Metrohm electrodes, respectively. Potential of linuron oxidation and current density depend on the pH of supporting electrolyte. Applying GCB and GC-Metrohm electrodes the most intensive electrochemical response for linuron was obtained in strongly acidic solution (0.1 mol dm−3 H2SO4). Applying the boron doped glassy carbon electrode the broadest linear range (0.005–0.1 μmol cm−3) for the linuron determination was obtained. The results of voltammetric determination of the linuron in spiked water samples showed good correlation between added and found amounts of linuron and also are in good agreement with the results obtained by HPLC-UV method. This appears to be the first application of a boron doped glassy carbon electrode for voltammetric determination of the environmental important compounds.   相似文献   

14.
《Electroanalysis》2006,18(3):253-258
The anodic voltammetric behavior of carbaryl on a boron‐doped diamond electrode in aqueous solution is reported. The results, obtained by square‐wave voltammetry at 0.1 mol L?1 Na2SO4 and pH 6.0, allow the development of a method to determine carbaryl, without any previous step of extraction, clean‐up, preconcentration or derivatization, in the range 2.5–30.0×10?6 mol L?1, with a detection limit of 8.2±0.2 μg L?1 in pure water. The analytical sensitivity of this electrochemical method diminished slightly, from 3.07 mA mmol?1 L to 2.90 mA mmol?1L, when the electrolyte was prepared with water samples collected from two polluted points in an urban creek. In these conditions, the recovery efficiencies obtained were around 104%. The effect of other pesticides (fenthion and 4‐nitrophenol) was evaluated and found to exert a negligible influence on carbaryl determination. The square‐wave voltammetric data obtained for carbaryl were typical of an irreversible electrode process with mass transport control. The combination of square‐wave voltammetry and diamond electrodes is an interesting and desirable alternative for analytical determinations.  相似文献   

15.
A glassy carbon electrode (GCE) was modified with a thin layer of multiwalled carbon nanotubes (MWCNTs) and subsequently, electrochemically deposited poly‐pyrrole. The electrochemical behavior of mesalazine was studied on the surface of the modified electrode by applying linear sweep voltammetry (LSV). The electropolymerization process and the electrochemical response toward mesalazine were investigated in the presence of different aromatic anion dopants including, benzenesulfonic acid (BSA), 1,3‐benzenedisulfonic acid (1,3‐BDSA), 1,5‐naphthalenedisulfonic acid (1,5‐NDSA) and new coccine (NC). By using 1,5‐NDSA as dopant, a significant increase (~418 times) in the peak current of mesalazine was observed, in comparison to the bare GCE. Experimental variables such as drop size of the cast MWCNTs suspension, pH of the supporting electrolyte, accumulation conditions and the number of scans in the electropolymerization process were optimized by monitoring the LSV responses of mesalazine. Under the optimum conditions, two linear dynamic ranges of 0.01–0.1 µmol L?1 and 0.1–1.0 µmol L?1 with a detection limit of 3 nmol L?1 were resulted for the voltammetric determination of mesalazine. The prepared electrode showed high sensitivity, stability and good reproducibility for determination of mesalazine. These properties made the prepared sensor suitable for the determination of mesalazine in pharmaceutical and clinical preparations.  相似文献   

16.
This work demonstrates gold nanoparticles (AuNPs)/functionalized multiwalled carbon nanotubes (f‐MWCNT) composite film modified gold electrode via covalent‐bonding interaction self‐assembly technique for simultaneous determination of salsolinol (Sal) and uric Acid (UA) in the presence of high concentration of ascorbic acid (AA). In pH 7.0 PBS, the composite film modified electrode exhibits excellent voltammetric response for Sal and UA, while AA shows no voltammetric response. The oxidation peak current is linearly increased with concentrations of Sal from 0.24–11.76 μmol L?1 and of UA from 3.36–96.36 μmol L?1, respectively. The detection limits of Sal and UA is 3.2×10?8 mol L?1 and 1.7×10?7 mol L?1 , respectively.  相似文献   

17.
The performance of hydrogen‐ (HT) and oxygen‐terminated (OT) boron‐doped diamond (BDD) electrodes (electrochemically pretreated) on the simultaneous differential pulse voltammetric determination of sulfamethoxazole and trimethoprim in pharmaceutical products is presented. Under the optimum analytical experimental conditions, the HT‐BDD electrode presented two well‐defined oxidation peaks at 920 and 1100 mV vs. Ag/AgCl for sulfamethoxazole and trimethoprim, respectively. On the other hand, when the OT‐BDD electrode was used, the sulfamethoxazole oxidation current peak was decreased twenty fold. The calculated LOD values for sulfamethoxazole and trimethoprim using the HT‐BDD electrode were 3.65 μg L?1 and 3.92 μg L?1, respectively. The results obtained in the simultaneous determination of sulfamethoxazole and trimethoprim in three different commercial formulations were similar to those obtained using a standard HPLC method at 95% confidence level.  相似文献   

18.
The spectrofluorimetric determination of terbium(III) as its ternary complex with EDTA and Tiron was studied further with regard to composition of the complex and the procedure was optimized by a simplex method. The results suggest a 1:1 molar ratio of terbium to Tiron for the ternary complex. The optimization study indicated that the three chosen variables (pH, and EDTA and Tiron concentration) are not interactive. The method was converted for use in a segmented-flow system with basic Technicon units and a spectrophotofluorimeter as detector. This procedure is satisfactory for the determination of terbium(III) in the range 0.03–0.24 μg ml?1 at a sampling rate of 30 h?1. Results were satisfactory for the determination of terbium in lanthanide oxides, mixed oxides, the mineral bastnasite and a green phosphor (Gd0.96 Ce0.02 Tb0.02 F3).  相似文献   

19.
An adsorptive stripping voltammetric procedure for the determination of cobalt in a complex matrices at an in situ plated lead film electrode was described. The procedure exploits the enhancement effect of a cobalt peak observed in the system Co(II)–nioxime–piperazine‐1,4‐bis(2‐ethanesulfonic acid)–cetyltrimethylammonium bromide. The calibration graph was linear from 5×10?10 to 2×10?8 mol L?1 and from 1×10?10 to 1×10?9 mol L?1 for the accumulation times 120 and 600 s, respectively. The detection limit (based on the 3 σ criterion) for Co(II) following accumulation time of 600 s was 1.1×10?11 mol L?1. The interference of high concentrations of foreign ions and surfactants was studied.  相似文献   

20.
《Electroanalysis》2005,17(8):719-723
A very sensitive and selective adsorptive cathodic stripping procedure for trace measurement of uranium is presented. The method is based on adsorptive accumulation of the uranium‐pyromellitic acid (benzene‐1,2,4,5‐tetracarboxylic acid) complex onto a hanging mercury drop electrode, followed by reduction of the adsorbed species by voltammetric scan using differential pulse modulation. Influences of effective parameters such as pH, concentration of pyromellitic acid, accumulation potential and accumulation time on the sensitivity were studied. The peak current was proportional to the concentration of U(IV) up to 40 ng mL?1 with a limit of detection of 0.136 ng mL?1 with an accumulation time of 120 s. The range of linearity enhanced to 71.4 ng mL?1and the detection limit improved to 0.058 ng mL?1with accumulation times of 60 s and 300 s respectively. The relative standard deviation for 10 replicate determination of 4.76 ng mL?1 U(IV) was equal to 2.7%. The possible interference by major cations and anions are investigated. The method was applied to the determination of uranium in some analytical grade salts, seawater and in synthetic samples corresponding to some uranium alloys with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号