首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the preparation of thermally tunable hydrogels displaying angle‐independent structural colors. The porous structures were formed with short‐range order using colloidal amorphous array templates and a small amount of carbon black (CB). The resultant porous hydrogels prepared using colloidal amorphous arrays without CB appeared white, whereas the hydrogels with CB revealed bright structural colors. The brightly colored hydrogels rapidly changed hues in a reversible manner, and the hues varied widely depending on the water temperature. Moreover, the structural colors were angle‐independent under diffusive lighting because of the isotropic nanostructure generated from the colloidal amorphous arrays.  相似文献   

2.
3.
Healing hands : A complex interplay between colloidal and polymeric energetics in microgel self‐assembly behavior results in soft colloidal assemblies with self‐healing properties. Repulsive soft spheres can adopt highly compressed conformations in colloidal crystalline lattices without directly contacting the nearest neighbors (see picture). This distant action is directly responsible for the self‐healing of the assemblies.

  相似文献   


4.
Structurally colored materials could potentially replace dyes and pigments in many applications, but it is challenging to fabricate structural colors that mimic the appearance of absorbing pigments. We demonstrate the microfluidic fabrication of “photonic pigments” consisting of microcapsules containing dense amorphous packings of core–shell colloidal particles. These microcapsules show non‐iridescent structural colors that are independent of viewing angle, a critical requirement for applications such as displays or coatings. We show that the design of the microcapsules facilitates the suppression of incoherent and multiple scattering, enabling the fabrication of photonic pigments with colors spanning the visible spectrum. Our findings should provide new insights into the design and synthesis of materials with structural colors.  相似文献   

5.
The drying of colloidal crystals is connected with a continuous shrinkage process. However, several minutes after starting the drying, the system seems to take a breath before it shrinks monotonously until its final state after about one day. This short period we call “v”‐event because of the shape of the curve characterizing the lattice constant: a decrease followed by a counter‐intuitive increase which ends after one hour. This event is found in time‐dependent optical spectra. It is assigned to the start of a nano‐dewetting process occurring at the colloidal particles.  相似文献   

6.
The self‐organization in solution of ZnO nanocrystals into superlattices is monitored by dynamic light scattering. When long‐alkyl‐chain amines or carboxylic acids are used as stabilizing ligands, no organization is observed. In contrast, when binary mixtures of long‐alkyl‐chain amines and carboxylic acids are used, the presence of a thermodynamic equilibrium between free and organized ZnO nanoparticles is detected in THF or toluene. The superlattices of organized ZnO nanoparticles are independently observed by TEM and SEM. The coordination mode of the ligands at the surface of the ZnO nanoparticles is evidenced by NMR studies. The presence of ion‐paired ammonium carboxylate surrounding the surface of ZnO nanoparticles appears to be a necessary requirement to govern this reversible organization. This is substantiated by the absence of organization of ZnO nanoparticles when either a solvent of high dielectric constant, such as acetone, or a strong hydrogen‐bond acceptor is used.  相似文献   

7.
8.
9.
10.
Nanochemical printmaking : Colloidal lithography paves a powerful nanochemical way for patterning on planar substrates and microparticles. The feature size can easily be scaled down to 100 nm by reducing the diameter of the microspheres and the feature shape diversified by the crystalline structure of a colloidal crystal mask, the mask etching time, the incidence angle of the vapor beam, and the mask registry (the azimuth angle of the vapor beam).

  相似文献   


11.
A series of structural complementary decapeptides with phenyl boronic acid tails or borono‐decapeptides (BPs) were designed and synthesized for supramolecular self‐assembly. After dissolving these borono‐decapeptides in deionized (DI) water, well‐defined nanofibers were formed in BP1 (B(OH)2VEKELVKEKL‐OH) and BP3 (B(OH)2AELELARARL‐OH). It was found that the self‐assembled borono‐decapeptide BP1 and BP3 have a parallel β‐sheet conformation in the formed nanofibers. The strategy demonstrated here shows a great prospect in preparation of well‐ordered nanofibers via rationally designing the molecular structures of peptides.

  相似文献   


12.
13.
14.
15.
Natural materials, such as bone and spider silk, possess remarkable properties as a result of sophisticated nanoscale structuring. They have inspired the design of synthetic materials whose structure at the nanoscale is carefully engineered or where nanoparticles, such as rods or wires, are self‐assembled. Although much work has been done in recent years to create ordered structures using diblock copolymers and template‐assisted assembly, no reports describe highly ordered, three‐dimensional nanotube arrays within a polymeric material. There are only reports of two‐dimensional network structures and structures on micrometer‐size scales. Here, we describe an approach that uses plasticized colloidal particles as a template for the self‐assembly of carbon nanotubes (CNTs) into ordered, three‐dimensional networks. The nanocomposites can be strained by over 200% and still retain high conductivity when relaxed. The method is potentially general and so may find applications in areas such as sensing, photonics, and functional composites.

  相似文献   


16.
17.
Bubbling up : Dissolution of CO2 bubbles in a suspension of colloidal particles chemically induces the assembly of particles on the surface of shrunken bubbles, and thus yields rapid continuous formation of a colloidal armor. This approach maintains the high colloidal stability of particles in bulk, has increased productivity, and allows the formation of bubbles with precisely controlled dimensions.

  相似文献   


18.
The phase behaviour of binary mixtures of ionic surfactants (1‐alkyl‐3‐imidazolium chloride, CnmimCl with n=14, 16 and 18) and imidazolium‐based ionic liquids (1‐alkyl‐3‐methylimidazolium tetrachloroferrate, CnmimFeCl4, with n=2 and 4) over a broad temperature range and the complete range of compositions is described. By using many complementary methods including differential scanning calorimetry (DSC), polarised microscopy, small‐angle neutron and X‐ray scattering (SANS/SAXS), and surface tension, the ability of this model system to support self‐assembly is described quantitatively and this behaviour is compared with common water systems. The existence of micelles swollen by the solvent can be deduced from SANS experiments and represent a possible model for aggregates, which has barely been considered for ionic‐liquid systems until now, and can be ascribed to the rather low solvophobicity of the surfactants. Our investigation shows that, in general, CnmimCl is a rather weak amphiphile in these ionic liquids. The amphiphilic strength increases systematically with the length of the alkyl chain, as seen from the phase behaviour, the critical micelle concentration, and also the level of definition of the aggregates formed.  相似文献   

19.
20.
A cationic dendritic molecule that has alkyl chains has been synthesized and employed to encapsulate anionic polyoxometalates through electrostatic interactions. The prepared surfactant‐encapsulated polyoxometalate (SEP) complexes were used as building blocks to fabricate self‐assemblies in solution and the solid state. Monodispersion, lamellar, and columnar assemblies of SEP complexes have been characterized in detail. With increasing the number of peripheral cationic dendrons on inorganic clusters, the SEPs undergo changes from globular assemblies to monodispersions in solution and from lamellar assemblies to hexagonal columnar structures in the solid state, depending on the amounts of cationic dendrons in the complexes. The structural evolvement was simulated through consideration of the size and shape of the cationic dendron and polyanionic clusters, and the experimental results are in good agreement with the interpretation of the simulations. The present research demonstrates a new kind of dendritic complex and provides a route for controlling their assembling states by simply alternating the number of cationic dendrons in the complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号