首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Syntheses, and electrochemical properties of two novel complexes, [Cu(phendio)(L ‐Phe)(H2O)](ClO4) ·H2O (1) and [Ni(phendio)(Gly)(H2O)](ClO4)·H2O (2) (where phendio = 1,10‐phenanthroline‐5,6‐dione, L ‐Phe = L ‐phenylalanine, Gly = glycine), are reported. Single‐crystal X‐ray diffraction results of (1) suggest that this complex structure belongs to the orthorhombic crystal system. The electrochemical properties of free phendio and these complexes in phosphate buffer solutions in a pH range between 2 and 9 have been investigated using cyclic voltammetry. The redox potential of these compounds is strongly dependent on the proton concentration in the range of ? 0.3–0.4 V vs SCE (saturated calomel reference electrode). Phendiol reacts by the reduction of the quinone species to the semiquinone anion followed by reduction to the fully reduced dianion. At pH lower than 4 and higher than 4, reduction of phendio proceeds via 2e?/3H+ and 2e?/2H+ processes. For complexes (1) and (2), being modulated by the coordinated amino acid, the reduction of the phendio ligand proceeds via 2e?/2H+ and 2e?/H+ processes, respectively. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Sulfasalazine (SSZ) is a pharmaceutical compound used for the treatment of rheumatoid arthritis. The electrochemical oxidation of SSZ at a glassy carbon electrode was studied by cyclic, differential pulse and square wave voltammetry in a wide pH range. For electrolytes with pH<11.0, the oxidation is an irreversible, diffusion‐control, pH‐dependent process that involves the transfer of one electron and one proton from the hydroxyl group of the salicylic moiety. For pH>11.0 the oxidation is pH‐independent, and a pKa≈11 was determined. The formation of a quinone‐like oxidation product that undergoes two electrons and two protons reversible redox reaction was observed. Also, UV‐vis spectra of SSZ were recorded as a function of supporting electrolytes pH. An electrochemical oxidation mechanism was proposed.  相似文献   

3.
《Electroanalysis》2004,16(8):627-632
The direct electrochemistry of catalase (Ct) was accomplished at a gold electrode modified with single‐wall carbon nanotubes (SWNTs). A pair of well‐defined redox peaks was obtained for Ct with the reduction peak potential at ?0.414 V and a peak potential separation of 32 mV at pH 5.9. Both reflectance FT‐IR spectra and the dependence of the reduction peak current on the scan rate revealed that Ct adsorbed onto the SWNT surfaces. The redox wave corresponds to the Fe(III)/Fe(II) redox center of the heme group of the Ct adsorbate. Compared to other types of carbonaceous electrode materials (e.g., graphite and carbon soot), the electron transfer rate of Ct redox reaction was greatly enhanced at the SWNT‐modified electrode. The peak current was found to increase linearly with the Ct concentration in the range of 8×10?6–8×10?5 M used for the electrode preparation and the peak potential was shown to be pH dependent. The catalytic activity of Ct adsorbates at the SWNTs appears to be retained, as the addition of H2O2 produced a characteristic catalytic redox wave. This work demonstrates that direct electrochemistry of redox‐active biomacromolecules such as metalloenzymes can be improved through the use of carbon nanotubes.  相似文献   

4.
Two Vanadium‐substituted Keggin‐type polyoxometalates, K3H2[α‐SiVW11O40]?6H2O (SiVW11) and K4H2[γ(1, 2)‐SiV2W10O40]?4H2O (SiV2W10) were first successfully immobilized on 4‐aminobenzoic acid modified glass carbon electrodes respectively by layer‐by‐layer assembly with poly (ethylenimine) (PEI) as counterions. The regular growth processes were monitored by cyclic voltammetry (CV), and it was proved that the multilayer films were uniform and stable. The cyclic voltammetry results indicated that the electrochemical behavior of two multilayer films was similar, and their redox couples are pH‐ and scan rate‐dependent. The multilayer films show favorable electrocatalytic active toward the reduction of NO2?, IO3? and H2O2.  相似文献   

5.
《Electroanalysis》2006,18(18):1800-1807
The electrochemical behavior of the antileukemia drug glivec was investigated at a glassy carbon electrode (GCE). The oxidation is a complex, pH‐dependent, irreversible electrode process involving the transfer of 2 electrons and 2 protons and the formation of an electroactive product, Pglivec, which strongly adsorbs on the GCE surface and undergoes reversible oxidation. The adsorption of Pglivec at the GCE surface yields a compact monolayer that inhibits further oxidation of glivec. The electrochemical reduction is a simple pH dependent irreversible process involving the transfer of 2 electrons and 2 protons and occurs with the formation of a nonelectroactive product. The diffusion coefficient of glivec was calculated to be DO=7.35×10?6 cm2 s?1 in pH 4.5 0.1 M acetate buffer.  相似文献   

6.
The electrochemical behavior of 5,11,17,23‐Tetrakis‐dimethylaminomethylcalix[4]arene (DCA) has been investigated by cyclic voltammetry (CV). The results show that there is an irreversible electrochemical oxidative wave with peak potential of 1.35 V in chloroform at a glassy carbon electrode. The kinetic parameters of the andic wave, such as α, n and ks, were discussed. In addition, a new pair of quasi‐reversible redox peaks with peak potentials of 0.72 V and 0.94 V was found. It can result in DCA electrodeposition at the electrode surface. This film modified electrode was characterized by CV and electrochemical impedance spectroscopy (EIS). Moreover, the possible mechanism of electrodeposition was also discussed  相似文献   

7.
A surface‐renewable tris(1, 10‐phenanthroline‐5, 6‐dione) iron (D) hexafluorophosphate (FePD) modified carbon ceramic electrode was constructed by dispersing FePD and graphite powder in methyltrimethoxysilane (MTMOS) based gels. The FePD‐modified electrode presented pH‐dependent voltammetric behavior, and its peak currents were diffusion‐controlled in 0.1 mol/L Na2SO4 + H2SO4 solution (pH = 0.4). In the presence of iodate, dear electrocatalytic reduction waves were observed and thus the chemically modified electrode was used as an amperometric sensor for iodate in common salt. The linear range, sensitivity, detection limit and response time of the iodate sensor were 5 × 10?6–1 × 10?2 mol/L, 7.448 μA·L/ mmol, 1.2 × 10?6 mol/L and 5 s, respectively. A distinct advantage of this sensor is its good reproducibility of surface‐renewal by simple mechanical polishing.  相似文献   

8.
《Electroanalysis》2017,29(2):538-547
A few novel metal complexes of chelidonic acid (chelH2), namely [Ca(chel)(H2O)3] ( 1 ), [Cu(chel)(H2O)5] ⋅ 2H2O ( 2 ) and [VO(chel)(H2O)3] ⋅ 2H2O ( 3 ) were prepared, identified by elemental analysis and characterized by electrochemical methods. IR‐spectra and thermal stability in solid state are discussed as well. The electrochemical characteristics of the free chelidonic acid and its complexes 1 – 3 were studied by (cyclic) square‐wave voltammetry, on static mercury drop electrode (SMDE) and paraffin‐impregnated graphite electrode (PIGE), in aqueous media over a wide pH range. The reduction of chelidonic acid on SMDE is a kinetically controlled electrode reaction, occurring with the transfer of one electron and two protons for 1<pH<6, whereas in very alkaline media the electron transfer is pH independent, i.e . the mechanism of electro‐reduction of chelH2 is proposed. The experimental parameters of the electroanalytical procedure were optimized and the method was applied for the investigation of the metal ion coordination preferences toward chelidonic acid. For the direct determination of solid complexes 1 – 3 , SW voltammetry of microparticles was used.  相似文献   

9.
The stable tetrathiafulvalene (TTF)‐linked 6‐oxophenalenoxyl neutral radical exhibits a spin‐center transfer with a continuous color change in solution caused by an intramolecular electron transfer, which is dependent on solvent and temperature. Cyclic voltammetry measurements showed that addition of 2,2,2‐trifluoroethanol (TFE) to a benzonitrile solution of the neutral radical induces a redox potential shift that is favorable for the spin‐center transfer. Temperature‐dependent cyclic voltammetry of the neutral radical using a novel low‐temperature electrochemical cell demonstrated that the redox potentials change with decreasing temperature in a 199:1 CH2Cl2/TFE mixed solvent. Furthermore, theoretical calculation revealed that the energy levels of the frontier molecular orbitals involved in the spin‐center transfer are lowered by the hydrogen‐bonding interaction of TFE with the neutral radical. These results indicate that the hydrogen‐bonding effect is a key factor for the occurrence of the spin‐center transfer of TTF‐linked 6‐oxophenalenoxyl.  相似文献   

10.
《Electroanalysis》2004,16(9):769-773
This communication reports on the electrochemical investigation of adenine on a sol‐gel carbon composite electrode (CCE). Cyclic voltammetric (CV) technique is used to characterize the redox behavior of adenine at CCE. The peak current and peak potentials are dependent on the pH of the buffer solution. From the scan rate and peak current study, there is evidence of adsorption of adenine on the CCE. The parameters affecting the differential pulse stripping adsorption peak were systematically optimized. Under optimum conditions of Eacc=?0.10 and tacc=60 s, a linear calibration plot was obtained, 2×10?7–1×10?6 M. This CCE is useful for the simultaneous analysis of adenine and guanine from denatured DNA.  相似文献   

11.
Bortezomib is the first therapeutic proteasome inhibitor used for cancer treatment. The redox behaviour of bortezomib was investigated over a wide pH range. Bortezomib undergoes electrochemical oxidation and reduction in independent mechanisms. The oxidation of bortezomib is pH‐dependent for pH<7.5 and occurs with the transfer of one electron and one proton involving the formation of two electroactive oxidation products. The reduction of bortezomib is quasi‐reversible, pH‐dependent, involving the transfer of two electrons and two protons and does not involve the formation of electroactive products. The value of pKa≈7.5 was determined. Mechanisms for oxidation and reduction were proposed.  相似文献   

12.
The redox peak of ferrocenylnaphthalene diimide used as a threading intercalator shifted positively due to the formation of its complex with β‐cyclodextrin. This complex collapsed upon the addition of double‐stranded DNA, and its redox potential shifted negatively. This behavior was applied for the homogenous detection of a polymerase chain reaction (PCR) product from Porphyromonas gingivalis, which is important for the diagnosis of periodontal disease, and its quantitative detection was achieved with a detection limit of 2.7 nM.  相似文献   

13.
This article describes an electrochemical strategy to achieve low background‐current levels in horse‐radish peroxidase (HRP)‐based electrochemical immunosensors. The strategy consists of (i) the use of an HRP substrate/product redox couple whose formal potential is high and (ii) the use of an electrode that shows moderate electrocatalytic activity for the redox couple. The strategy is proved by a model biosensor using a catechol/o‐benzoquinone redox couple and an indium tin oxide (ITO) electrode. The combined effect of high formal potential and moderate electrocatalytic activity allows o‐benzoquinone electroreduction with minimal catechol electrooxidation and H2O2 electroreduction. The detection limit for mouse‐IgG is 100 pg/mL.  相似文献   

14.
A conductive carbon paste electrode (CPE) comprised of a new copper‐complex of [Cu2(Dpq)2(Ac)2(H2O)2](ClO4)2?H2O (Dpq=dipyrido[3,2‐d : 2′,3′‐f]quinoxaline, Ac=acetate) and carbon powder, was fabricated by the direct mixing method. The electrochemical behavior and electrocatalysis of the new copper‐complex modified CPE (Cu‐CPE) have been studied in detail. Cyclic voltammograms showed that the Cu‐CPE had a favorable electrochemical response of a reversible redox couple of Cu(II)/Cu(I). The Cu‐CPE showed good electrocatalytic activity toward the reduction of the bromate, nitrite and hydrogen peroxide. The electrocatalytic reduction peak current of KBrO3, KNO2 and H2O2 showed a linear dependent on their concentrations. All of the results revealed that the Cu‐CPE had a good reproducibility, remarkable long term stability and especially good surface renewability by simple mechanical polishing in the event of surface fouling, which is important for practical application.  相似文献   

15.
A two‐dimensional π‐conjugated metal‐organic framework (MOF) with long‐range delocalized electrons has been prepared and applied as modified electrode material without further post‐modification. The MOF (Cu3(HHTP)2) is composed of Cu(II) centers and a redox‐active linker (2,3,6,7,10,11‐hexahydroxytriphenylene, HHTP). Compared to most MOFs, Cu3(HHTP)2 displays higher electrical conductivity and charge storage capacity owing to the collective effect of metal ions and aromatic ligands with π–π conjugation. In order to confirm the superior properties of this material, the electrochemical detection of dopamine (DA) was conducted and the satisfactory results were obtained. The currents increase linearly with the concentration of DA in the range 5.0 × 10?8 to 2.0 × 10?4 M with a detection limit of 5.1 nM. Furthermore, Cu3(HHTP)2 presents high selectivity and applicability in serum samples for electrochemical DA sensing. Overall, this material has excellent potential as a promising platform for establishing an MOF‐based electrochemical sensor.  相似文献   

16.
《Electroanalysis》2004,16(23):1972-1976
This paper presents polarographic and voltammetric studies on the electroreduction of 2,6‐dimethoxy‐4‐chloro‐1,3,5‐triazine on mercury electrodes in aqueous solutions and in the acidity range 2 M H2SO4 to pH 7. Above pH 6.5 no signals were obtained. In both DC and DP polarography and voltammetry, one or two partially overlapped reduction waves were observed, depending on the pH of the medium. The overall process corresponded to a four‐electron irreversible reduction. In strongly acidic media (pH<4.5) the protonated reactant was reduced through a two‐electron process to give a dechlorinated molecule that is subsequentely reduced at the potentials of the second wave. It was concluded that the reduction of the chlorinated s‐triazine rings seems to occur through the reductive cleavage of the chlorine irrespective of the nature of the groups bonded to the ring in positions 2, 6.  相似文献   

17.
In this work, the electrochemical behavior of ferrocene (Fc) was investigated by cyclic voltammetry (CV) in room temperature ionic liquids (RTILs) of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIBF4) on glass carbon (GC), edge plane pyrolytic graphite (EPPG) and multi‐walled carbon nanotube (MWCNTs)‐modified EPPG electrodes, respectively. The results demonstrated that on GC electrode, pairs of well‐defined reversible peaks were observed, while for the electrode of EPPG, the peak potential separation (ΔEp) is obviously larger than the theoretical value of 59 mV, hinting that the electrode of EPPG is distinguished from the commonly used electrode, consistent with the previous proposition that EPPG has many “defects”. To obtain an improved electrochemical response, multi‐walled carbon nanotubes (MWCNTs) were modified on the electrode of EPPG; the increased peak current and promoted peak potential separation not only proved the existence of “defects” in MWCNTs, but also supported that “creating active points” on an electrode is the main contribution of MWCNTs. Initiating the electrochemical research of Fc on the MWCNTs‐modified EPPG electrode in RTILs and verifying the presence of “defects” on both EPPG and MWCNTs using cyclic voltammograms (CVs) of Fc obtained in RTILs of EMIBF4, is the main contribution of this preliminary work.  相似文献   

18.
A carbon paste electrode spiked with 1‐[4‐ferrocenyl ethynyl) phenyl]‐1‐ethanone (4FEPE) was constructed by incorporation of 4FEPE in graphite powder‐paraffin oil matrix. It has been shown by direct current cyclic voltammetry and double step chronoamperometry that this electrode can catalyze the oxidation of tryptophan (Trp) in aqueous buffered solution. It has been found that under optimum condition (pH 7.00), the oxidation of Trp at the surface of such an electrode occurs at a potential about 200 mV less positive than at an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and rate constant for the chemical reaction between Trp and redox sites in 4FEPE modified carbon paste electrode (4FEPEMCPE) were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of Trp showed a linear dependent on the Trp concentrations and linear calibration curves were obtained in the ranges of 6.00×10?6 M–3.35×10?3 M and 8.50×10?7 M–6.34×10?5 M of Trp concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 1.80×10?6 M and 5.60×10?7 M by CV and DPV methods. This method was also examined as a selective, simple and precise new method for voltammetric determination of tryptophan in real sample.  相似文献   

19.
In this paper a Mg2Al‐Cl layered double hydroxide (Mg2Al‐LDH) modified carbon ionic liquid electrode (CILE) was prepared and further used for the electrochemical detection of rutin. Cyclic voltammograms of rutin on Mg2Al‐LDH/CILE were recorded with a pair of well‐defined redox peaks appeared in pH 2.5 phosphate buffer solution, which was ascribed to the electrochemical reaction of rutin. Due to the presence of Mg2Al‐LDH on the electrode surface, the redox peak currents increased greatly and the electrochemical parameters were calculated. Under the optimal conditions the oxidation peak current was proportional to rutin concentration in the range from 0.08 μmol L‐1 to 800.0 μmol L‐1 with the detection limit on 0.0255 μmol L‐1 (3σ). The fabricated electrode showed good reproducibility and stability, which was successfully applied to rutin tablet samples determination.  相似文献   

20.
《Electroanalysis》2004,16(6):450-457
The theory of adsorptive stripping square‐wave voltammetry (SWV) for relatively low ligand concentrations is employed to determine the reduction mechanism of Cd(II)‐ferron complexes accumulated on a static mercury drop electrode at different pH values. The electrochemical behavior of ferron molecules indicated that the adsorptive concentration of Cd(II) is possible in solutions with 3.5<pH<11, providing a wide pH range where the interference of other ligands present in real samples would be not so critical. Cyclic voltammetry experiments were also performed for the purpose of comparison. Fitting between experimental and theoretical square‐wave voltammograms shows that the prevailing species at the reaction layer coincide with the equilibrium bulk distribution. The simulation procedure indicated that the electrochemical rate constants of Cd(II)‐ferron complexes varied from (6±1) s?1 to (0.17±0.01) s?1 for solutions analyzed at pH 3.9 and 10.8, respectively. Changes at the surface concentrations are discussed considering the ligand to complex ratios at the electrode surface and at the solution bulk. From this analysis it is possible to infer that the oxidized metal species are produced in the electrolytic solution instead of on the electrode surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号