首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Desymmetrization of the divinyl carbinol 1,4‐pentadien‐3‐ol was accomplished by the asymmetric 1,3‐dipolar cycloaddition of azomethine imines based on a magnesium‐mediated, multinucleating chiral reaction system utilizing diisopropyl (R,R)‐tartrate as the chiral auxiliary. The corresponding optically active trans‐pyrazolidines, each with three contiguous stereogenic centers, were obtained with excellent regio‐, diastereo‐, and enantioselectivity, with results as high as 99 % ee. This reaction was shown to be applicable to both aryl‐ and alkyl‐substituted azomethine imines. The use of a catalytic amount of diisopropyl (R,R)‐tartrate was also effective when accompanied by the addition of MgBr2.  相似文献   

2.
The first rhodium‐catalyzed intramolecular hetero‐[5+2] cycloaddition reaction of vinyl aziridines and alkenes was realized, wherein both internal and terminal alkenes were applicable. With this method, a variety of unique substituted chiral fused bicyclic azepines, bearing multiple contiguous stereogenic centers, were facilely accessed in a straightforward, high‐yielding, and highly stereoselective manner under mild reaction conditions. Notably, the E/Z geometry of the C?C bonds in the vinyl aziridine‐alkene substrates impact the cis/trans stereochemistry of the cycloadducts and up to six stereoisomers could be delivered.  相似文献   

3.
A series of poly(1,4‐cyclohexylenedimethylene 1,4‐cyclohexanedicarboxylate) (PCCD) samples, characterized by different cis/trans ratio of the 1,4‐cyclohexanedicarbonyl unit, have been synthesized and analyzed by thermogravimetry (TGA), calorimetry (DSC), and X‐ray diffraction (WAXD). The thermal stability results are good and are not affected by the stereochemistry of the 1,4‐cyclohexylene units. On the other hand, the thermal transitions are notably influenced by the cis/trans content. With the increment of the trans content the polymer changes from completely amorphous to semicrystalline material. Tg, Tm, and crystallinity increase. These results suggest that the trans configuration induces a better chain packing and higher symmetry, improving the crystallizability of the samples. The effect of the molecular structure on the thermal properties is analyzed by using a statistical approach. From the effective correlations found between stereochemistry of the C6 rings and transition temperatures it is possible to extrapolate that the configuration of 1,4‐cyclohexylene ring deriving from 1,4‐cyclohexanedicarboxylic acid or dimethyl 1,4‐cyclohexanedicarboxylate results to be the main element responsible for the thermal properties. This is due to the high rigidity of the 1,4‐cyclohexanedicarbonyl unit with respect to 1,4‐cyclohexanedimethyleneoxy unit, deriving from the diol. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 619–630, 2008  相似文献   

4.
A route for the asymmetric synthesis of (?)‐stenine, a member of the Stemona alkaloid family used as folk medicine in Asian countries, is described. The key features of the sequence employed include stereoselective transformations on a cyclohexane ring controlled by a chiral auxiliary unit and an intramolecular Mitsunobu reaction to construct the perhydroindole ring system. By using an intermediate in the route to (?)‐stenine, an asymmetric synthesis of 9a‐epi‐stenine was also executed. The C(9a) stereocenter in 9a‐epi‐stenine was installed by using a Staudinger/aza‐Wittig reaction of a keto–azide precursor followed by reduction of the resulting imine. The results of this effort demonstrate the applicability of the chiral auxiliary based strategy to the preparation of naturally occurring alkaloids that contain highly functionalized cyclohexane cores.  相似文献   

5.
Summary.  Using tetra-O-pivaloyl-β-D-galactopyranosylamine as the chiral auxiliary, both trans- and cis-annelated decahydroquinoline alkaloids can be synthesized stereoselectively. This methodology of asymmetric synthesis is based on the effect that both enantiomers of 2,6-disubstituted piperidin-4-ones are selectively and alternatively accessible using the auxiliary as the identical stereodifferentiating tool. In addition, the carbohydrate auxiliary controls the stereoselective protonation of enolates formed by conjugate addition of cuprates to N-galactosyl octahydroquinolin-4-ones. The syntheses of trans-4a-epi-pumiliotoxin C and cis-4a-epi-perhydro-219A illustrate this concept of asymmetric synthesis of decahydroquinoline alkaloids. Received September 7, 2001. Accepted October 16, 2001  相似文献   

6.
The synthesis of a series of aromatic amide‐derived non‐biaryl atropisomers with a phosphine group and multiple stereogenic centers is reported. The novel phosphine ligands exhibit high diastereo‐ and enantioselectivities (up to >99:1 d.r., 95–99 % ee) as well as yields in the silver‐catalyzed asymmetric [3+2] cycloaddition of aldiminoesters with nitroalkenes, which provides a highly enantioselective strategy for the synthesis of optically pure nitro‐substituted pyrrolidines. In addition, the experimental results with regard to the carbon stereogenic center as well as the amide stereochemistry confirmed the potential of hemilabile atropisomers as chiral ligand in catalytic asymmetric [3+2] cycloaddition reaction.  相似文献   

7.
A highly stereoselective and efficient total synthesis of trans‐dihydronarciclasine from a readily available chiral starting material was developed. The synthesis defines two of the five stereogenic centers of the natural product by an amino acid ester–enolate Claisen rearrangement. The other three stereogenic centers are created in a highly stereocontrolled fashion via a six‐ring vinylogous ester intermediate, which is generated from the γ,δ‐unsaturated ester functional group of the Claisen rearrangement product in an efficient three‐step sequence. This concise total synthesis exemplifies the use of a highly regioselective Friedel–Crafts‐type cyclization to form the B ring via an isocyanate intermediate derived from an N‐Boc group, which is superior to the conventional method using an imino triflate intermediate. This same N‐Boc group is employed to give high selectivity in the Claisen rearrangement earlier in the sequence.  相似文献   

8.
Several syntheses have already been reported for cis‐trikentrins and herbindoles, which are indole alkaloids unsubstituted at the C2 and C3 positions that bear a trans‐1,3‐dimethylcyclopentyl unit. Herein, we describe the first asymmetric and stereoselective synthesis of the more challenging trans‐trikentrin A as its naturally occurring isomer. Different approaches were investigated and the strategy of choice was a combination of an enzymatic kinetic resolution and a thallium(III)‐mediated ring contraction. The antiproliferative activities of the natural product and related intermediates have been tested against human tumor cell lines, leading to the discovery of new compounds with potent antitumor activity.  相似文献   

9.
A highly stereo‐ and regioselective functionalisation of chiral non‐racemic aziridines is reported. By starting from a parent enantioenriched aziridine and finely tuning the reaction conditions, it is possible to address the regio‐ and stereoselectivity of the lithiation/electrophile trapping sequence, thereby allowing the preparation of highly enantioenriched functionalised aziridines. From chiral N‐alkyl trans‐2,3‐diphenylaziridines (S,S)‐ 1 a , b , two differently configured chiral aziridinyllithiums could be generated (trans‐ 1 a , b‐Li in toluene and cis‐ 1 a , b‐Li in THF), thus disclosing a solvent‐dependent reactivity that is useful for the synthesis of chiral tri‐substituted aziridines with different stereochemistry. In contrast, chiral aziridine (S,S)‐ 1 c showed a temperature‐dependent reactivity to give chiral ortho‐lithiated aziridine 1 c‐ ortho ‐Li at ?78 °C and α‐lithiated aziridine 1 c‐α‐Li at 0 °C. Both lithiated intermediates react with electrophiles to give enantioenriched ortho‐ and α‐functionalised aziridines. The reaction of all the lithiated aziridines with carbonyl compounds furnished useful chiral hydroxyalkylated derivatives, the stereochemistry of which was ascertained by X‐ray and NMR spectroscopic analysis. The usefulness of chiral non‐racemic functionalised aziridines has been demonstrated by reductive ring‐opening reactions furnishing chiral amines that bear quaternary stereogenic centres and chiral 1,2‐, 1,3‐ and 1,5‐aminoalcohols. It is remarkable that the solvent‐dependent reactivity observed with (S,S)‐ 1 a , b permits the preparation of both the enantiomers of amines ( 11 and ent‐ 11 ) and 1,2‐aminoalcohols ( 13 and ent‐ 13 ) starting from the same parent aziridine. Interestingly, for the first time, a configurationally stable chiral α‐lithiated aziridine ( 1 c‐α‐Li ) has been generated at 0 °C. In addition, ortho‐hydroxyalkylated aziridines have been easily converted into chiral aminoalkyl phthalans, which are useful building blocks in medicinal chemistry.  相似文献   

10.
A concise asymmetric (>99:1 e.r.) total synthesis of (+)‐anti‐ and (?)‐syn‐mefloquine hydrochloride from a common intermediate is described. The key asymmetric transformation is a Sharpless dihydroxylation of an olefin that is accessed in three steps from commercially available materials. The Sharpless‐derived diol is converted into either a trans or cis epoxide, and these are subsequently converted into (+)‐anti‐ and (?)‐syn‐mefloquine, respectively. The synthetic (+)‐anti‐ and (?)‐syn‐mefloquine samples were derivatized with (S)‐(+)‐mandelic acid tert‐butyldimethylsilyl ether, and a crystal structure of each derivative was obtained. These are the first X‐ray structures for mefloquine derivatives that were obtained by coupling to a known chiral, nonracemic compound, and provide definitive confirmation of the absolute stereochemistry of (+)‐anti‐ as well as (?)‐syn‐mefloquine.  相似文献   

11.
Bound rubber in a filled rubber compound is formed by physical adsorption and chemisorption between the rubber and the filler. Styrene–butadiene rubber (SBR) is composed of four components of styrene, cis‐1,4‐, trans‐1,4‐, and 1,2‐units. Filler–polymer interactions in both silica and carbon black‐filled SBR compounds were studied by analyzing microstructures of the bound rubbers with pyrolysis‐gas chromatography. Differences in the filler–polymer interactions of the styrene, cis‐1,4‐, trans‐1,4‐, and 1,2‐units were investigated. The filler–polymer interactions of the butadiene units were found to be stronger than that of the styrene unit. The interactions of the cis‐1,4‐ and trans‐1,4‐units were stronger with carbon black than with silica, whereas the 1,2‐unit interacted more strongly with silica than with carbon black. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 439–445, 2001  相似文献   

12.
The first total synthesis of the alkaloid (−)‐haliclonin A is reported. The asymmetric synthesis relied on a novel organocatalytic asymmetric conjugate addition of nitromethane with 3‐alkenyl cyclohex‐2‐enone to set the stereochemistry of the all‐carbon quaternary stereogenic center. The synthesis also features a Pd‐promoted cyclization to form the 3‐azabicyclo[3,3,1]nonane core, a SmI2‐mediated intermolecular reductive coupling of enone with aldehyde to form the requisite secondary chiral alcohol, ring‐closing alkene and alkyne metathesis reactions to build the two aza‐macrocyclic ring systems, and an unprecedented direct transformation of enol into enone.  相似文献   

13.
The first total synthesis of the alkaloid (?)‐haliclonin A is reported. The asymmetric synthesis relied on a novel organocatalytic asymmetric conjugate addition of nitromethane with 3‐alkenyl cyclohex‐2‐enone to set the stereochemistry of the all‐carbon quaternary stereogenic center. The synthesis also features a Pd‐promoted cyclization to form the 3‐azabicyclo[3,3,1]nonane core, a SmI2‐mediated intermolecular reductive coupling of enone with aldehyde to form the requisite secondary chiral alcohol, ring‐closing alkene and alkyne metathesis reactions to build the two aza‐macrocyclic ring systems, and an unprecedented direct transformation of enol into enone.  相似文献   

14.
We report an expedient approach to highly functionalized cis‐ and trans‐decalines that could function as key structural subunits toward the synthesis of various classes of terpenoids. Key to the strategy is an organocatalyzed Robinson annulation reaction of the Nazarov reagent that affords chiral enone building blocks with high enantioselectivities. The quaternary carbon stereogenic center can direct the subsequent reactions and allow the rapid and diastereoconvergent assembly of complex decalines with contiguous stereocenters.  相似文献   

15.
Maresin 1 (with the 7R carbon) and (7S)-maresin 1 were synthesized stereoselectively. The conjugated triene system was constructed by Pd-catalyzed coupling of the trans cis-dienylborane (the C10–C22 part) with the trans vinyl iodide corresponding to the C1–C9 part. The stereogenic centers at C7 and C14 were created by Ru-catalyzed asymmetric reduction of ketone and asymmetric epoxidation/kinetic resolution of the racemic alcohol, respectively.  相似文献   

16.
An efficient dearomatization process of [Cr(arene)(CO)3] complexes initiated by a nucleophilic acetaldehyde equivalent is detailed. It generates in a one‐pot reaction three C? C bonds and two stereogenic centers. This process allowed a rapid assembly of a cis‐decalin ring system incorporating a homoannular diene unit in just two steps starting from aromatic precursors (Scheme 2). The method was applied to the total synthesis of the eudesmane‐type marine furanosesquiterpene (±)‐15‐acetoxytubipofuran ( 2 ). Two routes were successfully used to synthesize the γ‐lactone precursor of the furan ring. The key step in the first approach was a Pd‐catalyzed allylic substitution (Scheme 3), while in the second approach, an Eschenmoser–Claisen rearrangement was highly successful (Scheme 4). The Pd‐catalyzed allylic substitution could be directed to give either the (normal) product with overall retention as major diastereoisomer or the unusual product with inversion of configuration (see Table). For the synthesis of the (?)‐enantiomer (R,R)‐ 2 of 15‐acetoxytubipofuran, an enantioselective dearomatization in the presence of a chiral diether ligand was implemented (Scheme 7), while the (+)‐enantiomer (S,S)‐ 2 was obtained via a diastereoselective dearomatization of an arene‐bound chiral imine auxiliary (Scheme 8). Chiroptical data suggest that a revision of the previously assigned absolute configuration of the natural product is required.  相似文献   

17.
《Tetrahedron: Asymmetry》1998,9(7):1239-1255
Diels–Alder reactions of 1,4-naphthoquinones bearing a chiral auxiliary at C-2, with cyclopentadiene under Lewis acid conditions afforded the corresponding Diels–Alder adducts. High levels of diastereomeric excess were obtained using (R)-pantolactone, (S)-N-methyl-2-hydroxysuccinimide and trans-2-phenylcyclohexanol as auxiliaries. Moderate asymmetric induction was achieved using Oppolzer's camphorsultam and (R)-(+)-4-benzyl-2-oxazolidinone as auxiliaries. X-Ray crystallographic analysis of the pantolactone adduct enabled determination of the stereochemistry of all adducts obtained.  相似文献   

18.
During studies of aziridination of α,β‐unsaturated amides with diaziridine, we found that we could prepare both the cis‐ and trans‐aziridinecarboxamides by choosing an appropriately substituted diaziridine. While 3‐monosubstituted diaziridine 2 was suitable for the trans‐selective aziridination, employment of 3,3‐dialkyldiaziridine 1 resulted in the formation of cis‐aziridine carboxamides, irrespective of the geometry of the substrate (Scheme 1 and Tables 1 and 2). To elucidate the unique nonstereospecificity and to expand these aziridinations to asymmetric ones, several optically active diaziridines were newly prepared. Aziridination with an optically active 3‐monosubstituted diaziridine, 3‐cyclohexyl‐1‐[(1R)‐1‐phenylethyl]diaziridine 16 , proceeded smoothly with high trans‐selectivity as well as excellent enantioselectivity (up to 98% ee; see Table 3). On the other hand, highly enantioselective cis‐aziridination was achieved (>99% ee) with optically active 3,3‐dimethyl‐1‐[(1R)‐1‐phenylethyl]diaziridine 15 , though the yield was low (4%). This aziridination was considered to proceed stepwise by way of the enolate intermediate (Scheme 2). Careful inspection of the stereochemistry and its solvent‐dependence suggested that the diastereoselection of the reaction was kinetically controlled: the 1,4‐addition of N‐lithiated diaziridine was a crucial step for determination of the stereochemical course of the aziridination (Figs. 24).  相似文献   

19.
The asymmetric Michael reaction of nitroalkanes and β,β‐disubstituted α,β‐unsaturated aldehydes was catalyzed by diphenylprolinol silyl ether to afford 1,4‐addition products with an all‐carbon quaternary stereogenic center with excellent enantioselectivity. The reaction is general for β‐substituents such as β‐aryl and β‐alkyl groups, and both nitromethane and nitroethane can be employed. The addition of nitroethane is considered a synthetic equivalent of the asymmetric Michael reaction of ethyl and acetyl substituents by means of radical denitration and Nef reaction, respectively. The short asymmetric synthesis of (S)‐ethosuximide with a quaternary carbon center was accomplished by using the present asymmetric Michael reaction as the key step. The reaction mechanism that involves the E/Z isomerization of α,β‐unsaturated aldehydes, the retro‐Michael reaction, and the different reactivity between nitromethane and nitroethane is discussed.  相似文献   

20.
A palladium‐catalyzed asymmetric synthesis of silicon‐stereogenic 5,10‐dihydrophenazasilines was developed that proceeds via an unprecedented enantioselective 1,5‐palladium migration. High enantioselectivity was achieved by employing 4,4′‐bis(trimethylsilyl) (R )‐Binap as the chiral ligand, and a series of mechanistic investigations were carried out to probe the catalytic cycle of this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号