首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Information about temporally varying molecular structure during chemical processes is crucial for understanding the mechanism and function of a chemical reaction. Using ultrashort optical pulses to trigger a reaction in solution and using time‐resolved X‐ray diffraction (scattering) to interrogate the structural changes in the molecules, time‐resolved X‐ray liquidography (TRXL) is a direct tool for probing structural dynamics for chemical reactions in solution. TRXL can provide direct structural information that is difficult to extract from ultrafast optical spectroscopy, such as the time dependence of bond lengths and angles of all molecular species including short‐lived intermediates over a wide range of times, from picoseconds to milliseconds. TRXL elegantly complements ultrafast optical spectroscopy because the diffraction signals are sensitive to all chemical species simultaneously and the diffraction signal from each chemical species can be quantitatively calculated from its three‐dimensional atomic coordinates and compared with experimental TRXL data. Since X‐rays scatter from all the atoms in the solution sample, solutes as well as the solvent, the analysis of TRXL data can provide the temporal behavior of the solvent as well as the structural progression of all the solute molecules in all the reaction pathways, thus providing a global picture of the reactions and accurate branching ratios between multiple reaction pathways. The arrangement of the solvent around the solute molecule can also be extracted. This review summarizes recent developments in TRXL, including technical innovations in synchrotron beamlines and theoretical analysis of TRXL data, as well as several examples from simple molecules to an organometallic complex, nanoparticles, and proteins in solution. Future potential applications of TRXL in femtosecond studies and biologically relevant molecules are also briefly mentioned.  相似文献   

4.
5.
Molecular movies : Time‐resolved X‐ray scattering provides direct structural information on an electronically excited complex while it is formed in the bimolecular reaction between excited octahydrogen[tetrakis‐μ‐diphosphito‐1κP:2κP′‐diplatinate](4‐) (PtPOP*) and thallium ions. In the exciplex one thallium(I) and two platinum(II) ions are found to be collinear.

  相似文献   


6.
7.
Photodissociation dynamics and rotational wave packet coherences of o‐bromofluorobenzene are studied by femtosecond time‐resolved photoelectron imaging (see figure). The decay of different photoelectron rings shows the population decay of states from which the lifetimes of different states are determined. The variation of photoelectron angular distributions reflects the evolution of rotational coherences.

  相似文献   


8.
9.
The recent advances in the study of light emission from matter induced by synchrotron radiation: X‐ray excited optical luminescence (XEOL) in the energy domain and time‐resolved X‐ray excited optical luminescence (TRXEOL) are described. The development of these element (absorption edge) selective, synchrotron X‐ray photons in, optical photons out techniques with time gating coincide with advances in third‐generation, insertion device based, synchrotron light sources. Electron bunches circulating in a storage ring emit very bright, widely energy tunable, short light pulses (<100 ps), which are used as the excitation source for investigation of light‐emitting materials. Luminescence from silicon nanostructures (porous silicon, silicon nanowires, and Si–CdSe heterostructures) is used to illustrate the applicability of these techniques and their great potential in future applications.  相似文献   

10.
Metallica : A large contraction of the Pt? Pt bond in the triplet excited state of the photoreactive [Pt2(P2O5H2)4]4? ion is determined by time‐resolved X‐ray absorption spectroscopy (see picture). The strengthening of the Pt? Pt interaction is accompanied by a weakening of the ligand coordination bonds, resulting in an elongation of the platinum–ligand bond that is determined for the first time.

  相似文献   


11.
《Chemphyschem》2004,5(1):27-35
Detection of ultrafast transient structures and the evolution of ultrafast structural intermediates during the course of reactions has been a long standing goal of chemists and biologists. This article will be restricted to nanosecond, picosecond and shorter time‐resolved extended X‐ray absorption fine structure (EXAFS) studies, its aim being to present the progress and problems encounter in measurements and understanding the structure of transients. The recent advances in source technology has stimulated a wide variety of novel experiments using both synchrotrons and smaller laboratory size systems. With more efficient X‐ray lenses and detectors many of the previously difficult experiments to perform, because of the exposure time required and weak signals, will now be easily performed. The experimental system for the detection of ultrafast time‐resolved EXAFS spectra of molecules in liquids is described and the method for the analysis of EXAFS spectra to yield transient structures is given. We believe that utilizing our table‐top ultrafast X‐ray source and the polycapillary optics in conjunction with dispersive spectrometer and charge coupled devices (CCD) we will be able to determine the structure of many reaction intermediates and excited states of chemical and biological molecules in solid and liquid state.  相似文献   

12.
13.
Its importance for life and its unusual properties keep water within the focus of ongoing research; this focus especially applies to water in the liquid phase. Scientists agree that the hydrogen‐bond network, which is formed by interactions between the water molecules, is key for understanding the anomalies of water. However, a better understanding of the structure of this network, as well as its dynamics, must yet be established. Soft X‐ray spectroscopy allows the investigation of the local electronic structure of water by probing the occupied and unoccupied valence molecular orbitals. In this Focus Review, we present soft‐X‐ray‐based techniques, their development in terms of liquid spectroscopy, and recent studies on the hydrogen‐bond network of liquid water.  相似文献   

14.
We present an in situ small‐ and wide‐angle X‐ray scattering (SAXS/WAXS) and quick‐scanning extended X‐ray absorption fine‐structure (QEXAFS) spectroscopy study on the crystallization of the metal–organic framework ZIF‐7. In combination with DFT calculations, the self‐assembly and growth of ZIF‐7 microrods together with the chemical function of the crystal growth modulator (diethylamine) are revealed at all relevant length scales, from the atomic to the full crystal size.  相似文献   

15.
Two p‐phenylenevinylene (PV) trimers, containing 3′‐methylbutyloxyl (in MBOPV3) and 2′‐ethylhexyloxyl (in EHOPV3) side chains, are used as model compounds of PV‐based conjugated polymers (PPV) with the purpose of clarifying the origin of fast (picosecond time) components observed in the fluorescence decays of poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐p‐phenylenevinylene] (MEH‐PPV). The fluorescence decays of MBOPV3 and EHOPV3 reveal the presence of similar fast components, which are assigned to excited‐state conformational relaxation of the initial population of non‐planar trimer conformers to lower‐energy, more planar conformers. The rate constant of conformational relaxation kCR is dependent on solvent viscosity and temperature, according to the empirical relationship kCR=o?exp(?αEη/RT), where o is the frequency factor, ηo is the pre‐exponential coefficient of viscosity, Eη is the activation energy of viscous flow. The empirical parameter α, relating the solvent microscopic friction involved in the conformational change to the macroscopic solvent friction (α=1), depends on the side chain. The fast component in the fluorescence decays of MEH‐PPV polymers (PPVs), is assigned to resonance energy transfer from short to longer polymer segments. The present results call for revising this assignment/interpretation to account for the occurrence of conformational relaxation, concurrently with energy transfer, in PPVs.  相似文献   

16.
A general solution : In situ synchrotron X‐ray scattering in a high‐pressure pulsed injection reactor (see picture) shows that magnetite nucleation and growth are temporally separated. Gram‐scale crystalline, pure phase, superparamagnetic magnetite nanoparticles were synthesized without surfactants in supercritical water in less than one hour using a laboratory‐scale continuous‐flow reactor.

  相似文献   


17.
A combined femtosecond transient absorption (fs‐TA) and nanosecond time‐resolved resonance Raman (ns‐TR3) spectroscopic investigation of the photoreaction of 2‐benzoylpyridine (2‐BPy) in acetonitrile and neutral, basic and acidic aqueous solvents is reported. fs‐TA results showed that the nπ* triplet 2‐BPy is the precursor of the photocyclisation reaction in neutral and basic aqueous solvents. The cis triplet biradical and the cis singlet zwitterionic species produced during the photocyclisation reaction were initially characterised by ns‐TR3 spectroscopy. In addition, a new species was uniquely observed in basic aqueous solvent after the decay of the cis singlet zwitterionic species and this new species was tentatively assigned to the photocyclised radical anion. The ground‐state conformation of 2‐BPy in acidic aqueous solvent is the pyridine nitrogen‐protonated 2‐BPy cation (2‐BPy‐NH+) rather than the neutral form of 2‐BPy. After laser photolysis, the singlet excited state (S1) of 2‐BPy‐NH+ is generated and evolves through excited‐state proton transfer (ESPT) and efficient intersystem crossing (ISC) processes to the triplet exited state (T1) of the carbonyl oxygen‐protonated 2‐BPy cation (2‐BPy‐OH+) and then photocyclises with the lone pair of the nitrogen atom in the heterocyclic ring. Cyclisation reactions take place both in neutral/basic and acidic aqueous solvents, but the photocyclisation mechanisms in these different aqueous solvents are very different. This is likely due to the different conformation of the precursor and the influence of hydrogen‐bonding of the solvent on the reactions.  相似文献   

18.
3′,5′‐Dimethoxybenzoin (DMB) is a bichromophoric system that has widespread application as a highly efficient photoremovable protecting group (PRPG) for the release of diverse functional groups. The photodeprotection of DMB phototriggers is remarkably clean, and is accompanied by the formation of a biologically benign cyclization product, 3′,5′‐dimethoxybenzofuran (DMBF). The underlying mechanism of the DMB deprotection and cyclization has, however, until now remained unclear. Femtosecond transient absorption (fs‐TA) spectroscopy and nanosecond time‐resolved resonance Raman (ns‐TR3) spectroscopy were employed to detect the transient species directly, and examine the dynamic transformations involved in the primary photoreactions for DMB diethyl phosphate (DMBDP) in acetonitrile (CH3CN). To assess the electronic character and the role played by the individual sub‐chromophore, that is, the benzoyl, and the di‐meta‐methoxybenzylic moieties, for the DMBDP deprotection, comparative fs‐TA measurements were also carried out for the reference compounds diethyl phosphate acetophenone (DPAP), and 3′,5′‐dimethoxybenzylic diethyl phosphate (DMBnDP) in the same solvent. Comparison of the fs‐TA spectra reveals that the photoexcited DMBDP exhibits distinctly different spectral character and dynamic evolution from those of the reference compounds. This fact, combined with the related steady‐state spectral and density functional theoretical results, strongly suggests the presence in DMBDP of a significant interaction between the two sub‐chromophores, and that this interaction plays a governing role in determining the nature of the photoexcitation and the reaction channel of the subsequent photophysical and photochemical transformations. The ns‐TR3 results and their correlation with the fs‐TA spectra and dynamics provide evidence for a novel concerted deprotection–cyclization mechanism for DMBDP in CH3CN. By monitoring the direct generation of the transient DMBF product, the cyclization time constant was determined unequivocally to be ≈1 ns. This indicates that there is little relevance for the long‐lived intermediates (>10 ns) in giving the DMBF product, and excludes the stepwise mechanism proposed in the literature as the major pathway for the DMB cyclization reaction. This work provides important new insights into the origin of the 3′,5′‐dimethoxy substitution effect for the DMB photodeprotection. It also helps to clarify the many different views presented in previous mechanistic studies of the DMB PRPGs. In addition to this, our fs‐TA results on the reference compound DMBnDP in CH3CN provide the first direct observation (to the best of our knowledge) showing the predominance of a prompt (≈2 ps) heterolytic bond cleavage after photoexcitation of meta‐methoxybenzylic compounds. This provides insight into the long‐term controversies about the photoinitiated dissociation mode of related substituted benzylic compounds.  相似文献   

19.
The study of the aggregation of small molecules in solution induced by metallophilic interactions has been traditionally performed by spectroscopic methods through identification of chemical changes in the system. Herein we demonstrate the use of SAXS (small‐angle X‐ray scattering) to identify structures in solution, taking advantage of the excellent scattering intensity of heavy metals which have undergone association by metallophilic interactions. An analysis of the close relationship between solid‐state and solution arrangements of a dynamic [Ag2(bisNHC)2]2+ (NHC=N‐heterocyclic carbene) system, and how they are complementary to each other, is reported.  相似文献   

20.
Summary: Solution‐grown lamellar crystals of poly(p‐dioxanone) (PPDX) have been crystallized isothermally from butane‐1,4‐diol at 100 °C. The crystal structure of PPDX has been determined by interpretation of X‐ray fiber diagrams of PPDX fibers and electron diffraction diagrams of lozenge‐shaped chain‐folder lamellar crystals. The unit cell of PPDX is orthorhombic with space group P212121 and parameters: a = 0.970 nm, b = 0.742 nm, and c (chain axis) = 0.682 nm. There are two chains per unit cell, which exist in an antiparallel arrangement.

Transmission electron micrograph of PPDX chain‐folded lamellar crystals obtained by isothermal crystallization and its electron diffraction diagram.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号