首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A sensitive and selective method for simultaneous quantitation of 15 benzodiazepines in human whole blood using rapid GC with negative‐ion chemical ionization MS is proposed. A mixed‐mode cation‐exchange polymeric sorbent was used for SPE. Different extraction solvents or mixtures of solvents of different compositions for elution of the adsorbed analytes, and washing steps for eliminating interferences in the column were tested. Analytes were eluted from the column using 5% v/v NH4OH in methanol. A derivatization step using different silylation reagents, time, and temperature was tested. Extracts from SPE were silylated by a mixture of N‐(tert‐butyldimethylsilyl)‐N‐methyltrifluoroacetamide, acetonitrile, ethyl acetate, and subjected to gas chromatographic analysis. The LODs of 15 benzodiazepines in whole blood samples ranged from 0.24–0.62 ng mL?1. The RSDs of samples used for three different quality control concentration levels were lower than 7.0%, and the accuracy ranged from 89.5 to 110.5%. The results show that the developed method is accurate, sensitive, selective, and very fast. Finally, the applicability of this method for determination of trace concentrations of several benzodiazepines in real blood samples has been demonstrated.  相似文献   

2.
A new method has been described to determine both benzodiazepines (six) and tricyclic antidepressants (four) simultaneously in saliva by HPLC with a UV detector set at 240 nm using cholchicine as the internal standard. A careful specific sequential solid‐phase elution was optimized and performed to elute benzodiazepines using a mixture of methanol‐acetonitrile (1:1 v/v) followed by the elution of tricyclic antidepressants with methanol. Separation of the compounds was performed on a Kromasil column (250 × 4 mm, 5 μm) by a gradient eluents consisting of 0.05 M CH3COONH4‐acetonitrile‐methanol (55:15:30 v/v/v). The results were linear for both benzodiazepines and tricyclic antidepressants up to 20 ng μL‐1 with the correlation coefficients greater than 0.998. The sensitivity limits, LOD and LOQ were 0.08‐0.34 ng μL‐1 and 0.28‐1.13 ng μL‐1, respectively. The method is simple, fast and reliable with good specificity and sensitivity, will be suitable for use in a clinical setting, where there is a concomitant use of 1,4‐benzodiazepines and tricyclic antidepressants.  相似文献   

3.
The performance of hydrogen‐ (HT) and oxygen‐terminated (OT) boron‐doped diamond (BDD) electrodes (electrochemically pretreated) on the simultaneous differential pulse voltammetric determination of sulfamethoxazole and trimethoprim in pharmaceutical products is presented. Under the optimum analytical experimental conditions, the HT‐BDD electrode presented two well‐defined oxidation peaks at 920 and 1100 mV vs. Ag/AgCl for sulfamethoxazole and trimethoprim, respectively. On the other hand, when the OT‐BDD electrode was used, the sulfamethoxazole oxidation current peak was decreased twenty fold. The calculated LOD values for sulfamethoxazole and trimethoprim using the HT‐BDD electrode were 3.65 μg L?1 and 3.92 μg L?1, respectively. The results obtained in the simultaneous determination of sulfamethoxazole and trimethoprim in three different commercial formulations were similar to those obtained using a standard HPLC method at 95% confidence level.  相似文献   

4.
The electrochemical behavior of different redox systems and detection of catechol were performed on the as‐grown boron‐doped diamond (BDD) electrodes and the nanograss array BDD. Compared with as‐grown BDD, the electron transfer on the nanograss array BDD surface became slower toward the negatively charged Fe(CN)63?, whereas changed little toward the positively charged Ru(NH3)63+. The nanograss array BDD showed higher electrocatalytic activity toward the catechol detection than did the as‐grown BDD. Good linearity was observed for a concentration range from 5 to 100 μM with a sensitivity of 719.71 mA M?1 cm?2 and a detection limit of 1.3 μM on the nanograss array BDD.  相似文献   

5.
《Analytical letters》2012,45(9):1955-1965
Abstract

The anodic voltammetric behavior of 4‐chlorophenol (4‐CP) on a boron‐doped diamond electrode (BDD) in aqueous solution was studied by square‐wave voltammetry. After optimization of the experimental conditions, 4‐CP was determined in a Britton‐Robinson buffer solution with pH 6.0, prepared with pure water. Moreover, mixtures of some different chlorophenols were also investigated and an analytical method was developed for the simultaneous determination of these compounds in natural waters. The oxidation of 4‐CP on BDD was used for analytical purposes and quantification limits as low as 9.2 µg L?1 were obtained. This result illustrates the advantage of using oxidation process currents on BDD electrodes as the analytical signal, even in contaminated matrices. In order to compare the results found here with the conventional methodology to determine chlorophenols, HPLC‐UV‐vis measurements were also performed and were in good agreement with the analytical values obtained by SWV.  相似文献   

6.
《Electroanalysis》2006,18(9):931-934
A flow injection analysis (FIA) method for the determination of paracetamol in pharmaceutical drugs using a gold electrode modified with a self‐assembled monolayer (SAM) of 3‐mercaptopropionic acid is described. At optimized experimental conditions the dynamic concentration range was 0.15 to 15.0 mg L?1 with a detection limit of 0.2 μg mL?1 (S/N=3). The repeatability of current responses for injections of 10 μmol L?1 paracetamol was evaluated to be 3.2% (n=30) and the analytical frequency was 180 h?1. The lifetime of the modified electrode was found to be 15 days. The results obtained by using the proposed amperometric method for paracetamol determination in four different drug samples compared well with those found by spectrophotometry.  相似文献   

7.
Methylparaben (MePa), ethylparaben (EtPa) and propylparaben (PrPa) have been widely used, among others, as chemical preservatives in cosmetics, drugs and foods. As these compounds are linked with allergies, dermatitis and estrogenic properties, it is necessary to control the concentration of these substances in different matrices. The aim of this paper are: to evaluate the electrochemical behavior of parabens on the boron-doped diamond (BDD) electrode and the development of a chromatographic method, with electrochemical detection (HPLC-ED), for determination of parabens in shampoo. A BDD (8000 ppm) electrode was adapted in a thin layer mode analytical cell consisting of a stainless steel and a platinum wire as reference and auxiliary electrodes, respectively. Chromatographic separations were obtained with a reversed phase C8 analytical column and a mobile phase of 0.025 mol L−1 disodium phosphate, pH 7.0, and acetonitrile (40:60, v/v), delivered at a flow rate of 1.0 mL min−1. Sample preparation was performed by solid phase extraction using C18 cartridges and acetonitrile for elution. Benzylparaben was employed as internal standard. The HPLC-ED method developed, using the BDD electrode, was validated for the determination of parabens in shampoos and presented adequate linearity (>0.999), in the range of 0.0125-0.500% (w/w), detectability 0.01% (w/w), precision (RSD of 2.3-9.8%) and accuracy (93.1-104.4%) and could be applied for routine quality control of shampoos containing MePa, EtPa and PrPa.  相似文献   

8.
An electrochemical method for the simultaneous determination of benzene, toluene and xylenes (BTX) in water was developed using square‐wave voltammetry (SWV). The determination of BTX was carried out using a cathodically pre‐treated boron‐doped diamond electrode (BDD) using 0.1 mol L?1 H2SO4 as supporting electrolyte. In the SWV measurements using the BDD, the oxidation peak potentials of the total xylenes‐toluene and toluene‐benzene couples, present in ternary mixtures, display separations of about 100 and 200 mV, respectively. The attained detection limits for the simultaneous determination of benzene, toluene and total xylenes were 3.0×10?7, 8.0×10?7 and 9.1×10?7 mol L?1, respectively. The recovery values taken in ternary mixtures of benzene, toluene and total xylenes in aqueous solutions are 98.9 %, 99.2 % and 99.4 %, respectively.  相似文献   

9.
Afatinib (AFT) is a new tyrosine kinase inhibitor approved for the treatment of nonsmall cell lung cancer. In the present study, a simple, specific, rapid and sensitive liquid chromatography tandem mass‐spectrometric method for the quantification of AFT in human plasma, was developed and validated. Chromatographic separation of the analytes was accomplished on a reversed‐phase Luna®‐PFP 100 Å column (50 × 2.0 mm; 3.0 μm) maintained at ambient temperature. Isocratic elution was carried out using acetonitrile–water (40:60, v/v) containing 10 mm ammonium formate buffer (pH 4.5) adjusted with formic acid at a flow rate of 0.4 mL min?1. The analytes were monitored by electrospray ionization in positive ion multiple reaction monitoring mode. The method yields a linear calibration plot (r2 = 0.9997) from a quantification range of 0.5–500 ng mL?1 with the lower limit of quantification and lower limit of detection of 1.29 and 0.42 ng mL?1, respectively. The intra‐ and inter‐day precision and accuracy were estimated and found to be in the ranges of 1.53–4.11% for precision and ?2.80–0.38% for accuracy. Finally, quantification of afatinib in a metabolic stability study in rat liver microsomes was achieved through the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Yavuz Yardım 《Electroanalysis》2011,23(10):2491-2497
In the present paper, a sensitive electroanalytical methodology for the determination of capsaicin using adsorptive stripping voltammetry (AdSV) at a boron‐doped diamond (BDD) electrode is presented. The voltammetric results indicate that in the presence of sodium dodecylsulfate (SDS) the BDD electrode remarkably enhances the oxidation of capsaicin which leads to an improvement of the peak current with a shift of the peak potential to less negative values. A linear working range of 0.05 to 6.0 µg mL?1 (0.16–20 µM) with a detection limit of 0.012 µg mL?1 (0.034 µM) has been obtained using BDD electrode by AdSV.  相似文献   

11.
《Electroanalysis》2006,18(16):1590-1597
This work proposes the utilization of a boron doped diamond (BDD) electrode as a sensor for pesticides and as well as an anode for electrochemical combustion of Parathion in spiked, pure and natural waters. The square‐wave voltammetry was selected as the electroanalytical technique and the Britton–Robinson buffer as the electrolyte. The electrochemical reduction responses of Parathion were analyzed and compared with those previously obtained using a hanging mercury electrode (HMDE). The detection and quantification limits were calculated from the analytical curves both for BDD and HMDE in Milli‐Q water (2.4 and 7.9 μg L?1 and 3.9 and 12.8 μg L?1 respectively) showing only a slight improvement when used BDD. However, if the application involves polluted natural waters the improvement is accentuated due to the very low adsorption characteristics of BDD, which prevent the fouling of electrode surface by organic pollutants. The BDD was also used as anode for electrochemical remediation of Parathion contamination. In this case, electrolysis was carried out in high positive potential (3.0 V) and lead the electrochemical combustion of Parathion to CO2 and H2O, as measured by the diminishing of total organic carbon in the electrolyte.  相似文献   

12.
The present work describes the individual, selective and simultaneous quantification of acetaminophen (ACP) and tramadol hydrochloride (TRA) using a modification‐free boron‐doped diamond (BDD) electrode. Cyclic voltammetric measurements revealed that the profile of the binary mixtures of ACP and TRA were manifested by two irreversible oxidation peaks at about +1.04 V (for ACP) and +1.61 V (for TRA) in Britton‐Robinson (BR) buffer pH 3.0. TRA oxidation peak was significantly improved in the presence of anionic surfactant, sodium dodecyl sulfate (SDS), while ACP signal did not change. By employing square‐wave stripping mode in BR buffer pH 3.0 containing 8×10?4 mol L?1 SDS after 30 s accumulation under open‐circuit voltage, the BDD electrode could be used for quantification of ACP and TRA simultaneously in the ranges 1.0–70 μg mL?1 (6.6×10?6–4.6×10?4 mol L?1) and 1.0–70 μg mL?1 (3.3×10?6–2.3×10?4 mol L?1), with detection limits of 0.11 μg mL?1 (7.3×10?7 mol L?1) and 0.13 μg mL?1 (4.3×10?7 mol L?1), respectively. The practical applicability of the proposed approach was tested for the individual and simultaneous quantification of ACP and/or TRA in the pharmaceutical dosage forms.  相似文献   

13.
A tridentate ligand, BPIEP: 2,6‐bis[1‐(2,6‐diisopropyl phenylimino) ethyl] pyridine, having central pyridine unit and two peripheral imine coordination sites was effectively employed in controlled/“living” radical polymerization of MMA at 90°C in toluene as solvent, CuIBr as catalyst, and ethyl‐2‐bromoisobutyrate (EBiB) as initiator resulting in well‐defined polymers with polydispersities Mw/Mn ≤ 1.23. The rate of polymerization follows first‐order kinetics, kapp = 3.4 × 10?5 s?1, indicating the presence of low radical concentration ([P*] ≤ 10?8) throughout the reaction. The polymerization rate attains a maximum at a ligand‐to‐metal ratio of 2:1 in toluene at 90°C. The solvent concentration (v/v, with respect to monomer) has a significant effect on the polymerization kinetics. The polymerization is faster in polar solvents like, diphenylether, and anisole, as compared to toluene. Increasing the monomer concentration in toluene resulted in a better control of polymerization. The molecular weights (Mn,SEC) increased linearly with conversion and were found to be higher than predicted molecular (Mn,Cal). However, the polydispersity remained narrow, i.e., ≤1.23. The initiator efficiency at lower monomer concentration approaches a value of 0.7 in 110 min as compared to 0.5 in 330 min at higher monomer concentration. The aging of the copper salt complexed with BPIEP had a beneficial effect and resulted in polymers with narrow polydispersitities and higher conversion. PMMA obtained at room temperature in toluene (33%, v/v) gave PDI of 1.22 (Mn = 8500) in 48 h whereas, at 50°C the PDI is 1.18 (Mn = 10,300), which is achieved in 23 h. The plot of lnkapp versus 1/T gave an apparent activation energy of polymerization as (ΔEapp) 58.29 KJ/mol and enthalpy of equilibrium (ΔH0eq) to 28.8 KJ/mol. Reverse ATRP of MMA was successfully performed using AIBN in bulk as well as solution. The controlled nature of the polymerization reaction was established through kinetic studies and chain extension experiments. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4996–5008, 2005  相似文献   

14.
A simple and selective high‐performance liquid chromatography method coupled with fluorescence detection was developed for the simultaneous measurement of trace levels of four estrogens (estrone, estradiol, estriol and 17α‐ethynyl estradiol) in environmental matrices. For feces samples, solid–liquid extraction was applied with a 1:1 v/v mixture of acetonitrile and ethyl acetate as the extraction solvent. For liquid samples (e.g., leachate and groundwater), hydrophobic/lipophilic balanced automated solid‐phase extraction disks were selected due to their high recoveries compared to conventional C18 disks. Chromatographic separations were performed on a reversed‐phase C18 column gradient‐eluted with a 45:55 v/v mixture of acetonitrile and water. The detection limits were down to 1.1 × 10?2 (estrone), 4.11 × 10?4 (estradiol), 5.2 × 10?3 (estriol) and 7.18 × 10?3 μg/L (17α‐ethynyl estradiol) at excitation/emission wavelengths of 288/310 nm, with recoveries in the range of 96.9 ± 3.2–105.4 ± 3.2% (n = 3). The method was successfully applied to determine estrogens in feces and water samples collected at livestock farms and a major river in Northeast China. We observed relatively high abundance and widespread distribution of all four estrogens in our sample collections, implying the urgency for a comprehensive and intricate investigation of estrogenic fate and contamination in our researched area.  相似文献   

15.
To the determination of trace amount of Cd(II) present in food and water samples, a selective and extractive spectrophotometric method were developed with 2,6‐diacetylpyridine‐bis‐4‐phenyl‐3‐thiosemicarbazone as a complexing agent. The yellowish orange colored metal complex, Cd(II)‐2,6‐DAPBPTSC with 1:1 (M:L) composition was extracted in to cyclohexanol at pH 9.5 and was shows maximum absorbance at λmax 390 nm. This method obeys Beer's law in the range of 1.12‐11.25 ppm with 0.972 correlation coefficient of Cd(II)‐2,6‐DAPBPTSC complex, which is indicates linearity between the two variables. The molar absorptivity and sandell's sensitivity were found to be 6.088 × 104 L mol?1 cm?1 and 0.0018 μg cm?2, respectively. The instability constant calculated from Asmus' method (1.447 × 10?4)at room temperature. The precision and accuracy of the method were checked by relative standard deviation (n = 5), 0.929 and its detection limit, 0.0060 μg mL?1. The interfering effects of various cations and anions were also studied. The proposed method was successfully applied to the determination of Cd(II) in foods and water samples, and was evaluated its performance in terms of Student ‘t’ test and Variance ‘f’ test, which indicates the significance of present method. The inter comparison of the experimental values, using atomic absorption spectrometer (AAS), was also repoted.  相似文献   

16.
High faradaic efficiencies can be achieved in the production of formic acid (HCOOH) by metal electrodes, such as Sn or Pb, in the electrochemical reduction of carbon dioxide (CO2). However, the stability and environmental load in using them are problematic. The electrochemical reduction of CO2 to HCOOH was investigated in a flow cell using boron‐doped diamond (BDD) electrodes. BDD electrodes have superior electrochemical properties to metal electrodes, and, moreover, are highly durable. The faradaic efficiency for the production of HCOOH was as high as 94.7 %. Furthermore, the selectivity for the production of HCOOH was more than 99 %. The rate of the production was increased to 473 μmol m?2 s?1 at a current density of 15 mA cm?2 with a faradaic efficiency of 61 %. The faradaic efficiency and the production rate are almost the same as or larger than those achieved using Sn and Pb electrodes. Furthermore, the stability of the BDD electrodes was confirmed by 24 h operation.  相似文献   

17.
This study presents the atmospheric pressure photoionization (APPI) of high‐chlorinated (five or more chlorine atoms) polychlorinated biphenyls (PCBs) using toluene as dopant, after liquid chromatographic separation. Mass spectra of PCB 101, 118, 138, 153, 180, 199, 206 and 209 were recorded by using liquid chromatography‐APPI‐tandem mass spectrometry (LC‐APPI‐MS/MS) in negative ion full scan mode. Intense peaks appeared at m/z that correspond to [M ? Cl + O]? ions, where M is the analyte molecule. Furthermore, a detailed strategy, which includes designs of experiments, for the development and optimization of LC‐APPI‐MS/MS methods is described. Following this strategy, a sensitive and accurate method with low instrumental limits of detection, ranging from 0.29 pg for PCB 209 to 8.3 pg for PCB 101 on column, was developed. For the separation of the analytes, a Waters XSELECT HSS T3 (100 mm × 2.1 mm, 2.5 µm) column was used with methanol/water as elution system. This method was applied for the determination of the above PCBs in water samples (surface water, tap water and treated wastewater). For the extraction of PCBs from water samples, a simple liquid–liquid extraction with dichloromethane was used. Method limits of quantification, ranged from 4.8 ng l?1, for PCB 199, to 9.4 ng l?1, for PCB 180, and the recoveries ranged from 73%, for PCB 101, to 96%, for PCB 199. The estimated analytical figures were appropriate for trace analysis of high‐chlorinated PCBs in real samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The electrochemical oxidation of procaine hydrochloride (PC?HCL, 2‐diethylaminoethyl 4‐aminobenzoate hydrochloride) was investigated at as‐deposited boron‐doped diamond (ad‐BDD) electrode, anodically oxidized BDD (ao‐BDD) electrode and glassy carbon (GC) electrode using cyclic voltammetry (CV). Well‐defined cyclic voltammograms were obtained for PC?HCL oxidation with high signal‐to‐background (S/B) ratio, low tendency for adsorption, good reproducibility and long‐term stability at ad‐BDD electrode, demonstrating its superior electrochemical behavior and significant advantages in contrast to ao‐BDD and GC electrode. At 100 μM PC?HCL, the voltammetric S/B ratio was nearly one order of magnitude higher at an ad‐BDD electrode than that at a GC electrode. In a separate set of experiments for oxidation of 100 μM PC?HCL, 96%, 92% and 84% of the initial oxidation peak current was retained at the ad‐BDD, ao‐BDD and GC electrode, respectively, by stirring the solution after the tenth cycle. The current response was linearly proportional to the square root of the scan rate within the range 10–1000 mV s?1 in 10 μM PC?HCL solutions, indicating that the oxidation process was diffusion‐controlled with negligible adsorption at an ad‐BDD surface. The good linearity was observed for a concentration range from 5 to 200 μM with a linear equation of y=0.03517x+0.65346 (r=0.999), and the detection limit was 0.5 μM for oxidation of PC?HCL at the ad‐BDD electrode. The ad‐BDD electrode could maintain 100% of its original activity after intermittent use for 3 months.  相似文献   

19.
New synthesized reagent 2,6‐diacetylpyridine bis‐4‐phenyl‐3‐thiosemicarbazone (2,6‐DAPBPTSC) is proposed as a sensitive and selective analytical reagent for the extractive spectrophotometric determination of cobalt(II). Cobalt(II) forms a reddish brown colored complex with 2,6‐DAPBPTSC, which is extracted into isoamylalcohol, under optimum conditions. The maximum absorption of the isoamylalcohol extract is measured at 400 nm. Beer's law is applied in the range 0.6‐6.0 ppm of cobalt(II). The molar absorptivity and Sandell's sensitivity of the complex is calculated as 2.2 × 104 L mol?1 cm?1 and 2.68 × 10?3 μg cm?2, respectively. An adequate linearity with a correlation coefficient value of 0.969 is obtained for the Co(II)‐2,6‐DAPBPTSC complex. The instability constant of the complex, calculated from Asmus' method is 3.75 × 10?4 The precision and accuracy of the method is checked with calculation of relative standard deviation (n = 5), 0.388 and the detection limit a value is 0.0028 μg mL?1. The method is successfully employed for the determination of cobalt(II) in real samples, such as vegetables, soil, water samples, standard alloy samples, and the performance of the present method was evaluated in terms of Student ‘t’ test and Variance ‘f’ test, which indicates the significance of the present method is an inter comparison of the experimental values, using atomic absorption spectrometer (AAS).  相似文献   

20.
The purpose of this paper is to develop an electroanalytical method based on square‐wave voltammetry (SWV) for the determination of the solvent blue 14 (SB‐14) in fuel samples. The electrochemical reduction of SB‐14 at glassy carbon electrode in a mixture of Britton‐Robinson buffer with N,N‐dimethylformamide (1 : 1, v/v) presented a well‐defined peak at?0.40 V vs. Ag/AgCl. All parameters of the SWV technique were optimized and the electroanalytical method presented a linear response from 1.0×10?6 to 6.0×10?6 mol L?1 (r=0.998) with a detection limit of 2.90×10?7 mol L?1. The developed method was successfully utilized in the quantification of the dye SB‐14 in kerosene and alcohol samples with average recovery from 93.00 to 98.10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号