首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 601 毫秒
1.
We describe the synthesis and characterization of a weakly cross‐linked poly(methacrylic acid‐co‐ethyl acrylate) alkali‐swellable emulsion (ASE), as well as an investigation of its influence on the rate of polymer diffusion in latex films. The films examined were formed from poly(vinyl acetate‐co‐butyl acrylate) latex particles containing a small amount of acrylic acid as a comonomer. Polymer diffusion rates were monitored by the energy transfer technique. We found that the presence of the ASE component, either in the acid form or fully neutralized by ammonia or sodium hydroxide, had very little effect on the polymer diffusion rate. However, in the presence of 2 wt % NH4‐ASE, there was a small but significant increase in the polymer diffusion rate. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5632–5642, 2005  相似文献   

2.
We describe the synthesis and characterization of a series of poly(vinyl acetate‐co‐dibutyl maleate) [P(VAc‐DBM)] latex particles (monomer molar ratio 10.6:1). One set of samples [high‐M and M250k SDS‐P(VAc‐DBM), gel content 50% and 0%] was prepared in the presence of an anionic surfactant sodium dodecyl sulfate. The other two sets of samples [high‐M and M250k PVOH–P(VAc‐DBM)] were prepared in the presence of poly(vinyl alcohol) (PVOH). These polymers differ in gel content (50 and 0%) and the extent of PVOH grafting (30 and 15%). Polymer diffusion across cell boundaries in the latex films was monitored by fluorescence resonant energy transfer (ET) experiments. First, we examined M250k samples in the presence of grafted and post‐added PVOH. The presence of post‐added PVOH (5%) causes a small but detectable retardation on the rate of polymer diffusion, whereas the presence of grafted PVOH (degree of grafting: 15%) significantly promotes the polymer diffusion rate. For the high‐M P(VAc‐DBM), the presence of post‐added PVOH also retards the polymer diffusion. Strikingly, the presence of grafted PVOH (degree of grafting: 30%) in the high‐M PVOH‐P(VAc‐DBM) promotes the polymer diffusion to such an extent that the diffusion was complete in the freshly prepared films. Our data also suggest that under our experimental conditions, the rate of P(VAc‐DBM) diffusion increases with an increase of the degree of PVOH grafting. To confirm these results, we carried out fluorescence microscopy experiments to monitor the fate of PVOH in these latex films and found that in newly formed PVOH–P(VAc‐DBM) films, the PVOH was either uniformly distributed in the P(VAc‐DBM) matrix or the domains were too small to be resolved (i.e., < 0.5 μm). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5005–5020, 2004  相似文献   

3.
An increased sustainabile awarness has inspired the development of new polymeric networks in a remarkable way and this strive should be combined with environmentally concerned end‐uses. Therefore, a UV‐crosslinked polyhydroxyurethane film with antibacterial properties is developed. First, a hydroxyurethane precursor is synthesized using aminolysis condensation, circumventing the use of isocyanates. The films are subsequently crosslinked under solvent‐free conditions through a UV‐triggered thiol‐ene mechanism. The reactions are monitored by 1H nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy, and the networks have gel contents above 90%, and are transparent, hydrophilic, and highly flexible. Antibacterial properties are achieved by a controlled quaternization of the network's tertiary‐amine and methylation of thiol‐ether functionality, resulting in quaternary ammonium compounds (QACs) and sulfonium compounds. The antibacterial properties are evaluated against both Escherichia coli and Staphylococcus aureus using the agar plate diffusion and tube shaking methods. The QAC‐loaded films exhibit outstanding bactericide properties (>99.9%) and the antibacterial mechanism is demonstrated to be a dual killing mechanism, i.e., diffusion killing and contact active killing.  相似文献   

4.
The “breath figures” method provides an efficient and cost‐effective method to produce highly ordered honeycomb patterns in polymeric films at micrometer and sub‐micrometer dimensions. The size and regularity of the pores can be adjusted through a series of physical and chemical parameters. In this study, amphiphilic diblock copolymers, polystyrene‐block‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) with different lengths of P4VP, were synthesized through Reversible Addition‐Fragmentation Chain Transfer polymerization. The honeycomb‐patterned films were prepared from these well‐defined polymers through the dynamic breath figures method. A series of physical parameters including solution concentration, flow rate, humidity of the flow, and the humidity of the casting environment, were delicately adjusted to systematically investigate their effects on the morphology of the films. These studies identified four key factors which were found to influence the formation of the pattern. No obvious effect was found on the pore size by changing the length of P4VP block. The result provides clear direction on the fabrication of PS‐b‐P4VP honeycomb‐patterned films and more broadly contributes a deeper understanding of the processes involved in the formation of honeycomb patterns. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3721–3732  相似文献   

5.
This article describes the results of experiments examining the competition between the polymer diffusion rate and the crosslinking rate in low‐glass‐transition‐temperature, epoxy‐containing latex films in the presence of a diamine. We examined films formed from donor‐ and acceptor‐labeled poly(butyl acrylate‐co‐methyl methacrylate‐co‐glycidyl methacrylate) copolymer latex and studied the influence of several parameters on the growth rate of gel content and the rate of polymer diffusion. These factors include the molecular weight of the latex polymer, the presence or absence of a diamine crosslinking agent, and the cure protocol. The results were compared to the predictions of a recent theory of the competition between crosslinking and polymer diffusion across interfaces. In the initially formed films, polymer diffusion occurs more rapidly than the chemical reaction rate. Therefore, these films fall into the fast‐diffusion category of this model. In our system (unlike in the model), the latex polymer has a broad distribution of molecular weights and a distribution of diffusivities. The shortest chains contribute to the early time diffusion that we measure. At later stages of our experiment, slower diffusing species contribute to the signal that we measure. The diffusion time decreases substantially, and we observe a crossover to a regime in which the chemical reaction dominates. The increases in chain branching and gel formation bring polymer diffusion to a halt. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4098–4116, 2002  相似文献   

6.
We report a simple and effective strategy for fabrication of the nanocomposite containing chitosan (CS) and multiwall carbon nanotube (MWNT) coated on a glassy carbon electrode (GCE). The characterization of the modified electrode (CS‐MWNT/GC) was carried out using scanning electron microscopy (SEM) and UV–vis absorption spectroscopy. The electrochemical behavior of CS‐MWNT/GC electrode was investigated and compared with the electrochemical behavior of chitosan modified GC (CS/GC), multiwalled carbon nanotube modified GC (MWNT/GC) and unmodified GC using cyclic voltammetry (CV) and electron impedance spectroscopy (EIS). The chitosan films are electrochemically inactive; similar background charging currents are observed at bare GC. The chitosan films are permeable to anionic Fe(CN)63?/4? (FC) redox couple. Electrochemical parameters, including apparent diffusion coefficient for the Fe(CN)63?/4? redox probe at FC/CS‐MWNT/GC electrode is comparable to values reported for cast chitosan films. This modified electrode also showed electrocatalytic effect for the simultaneous determination of D‐penicillamine (D‐PA) and tryptophan (Trp). The detection limit of 0.9 μM and 4.0 μM for D‐PA and Trp, respectively, makes this nanocomposite very suitable for determination of them with good sensitivity.  相似文献   

7.
The diffusion of Pb through Pb(Zr0.2Ti0.8)O3(PZT)/Pt/Ti/SiO2/Si thin film heterostructures is studied by using time‐of‐flight secondary ion mass spectrometry depth profiling. The as‐deposited films initially contained 10 mol% Pb excess and were thermally processed at temperatures ranging from 325 to 700°C to promote Pb diffusion. The time‐of‐flight secondary ion mass spectrometry depth profiles show that increasing processing temperature promoted Pb diffusion from the PZT top film into the buried heterostructure layers. After processing at low temperatures (eg, 325°C), Pb+ counts were low in the Pt region. After processing at elevated temperatures (eg, 700°C), significant Pb+ counts were seen throughout the Pt layer and into the Ti and SiO2 layers. Intermediate processing temperatures (400, 475, and 500°C) resulted in Pb+ profiles consistent with this overall trend. Films processed at 400°C show a sharp peak in PtPb+ intensity at the PZT/Pt interface, consistent with prior reports of a Pt3Pb phase at this interface after processing at similar temperatures.  相似文献   

8.
The effects of film thickness, physical aging, and methanol conditioning on the solubility and transport properties of glassy poly[1‐phenyl‐2‐[p‐(triisopropylsilyl) phenyl]acetylene] are reported at 35 °C. In general, the gas permeability coefficients are very high, and this polymer is more permeable to larger hydrocarbons (e.g., C3H8 and C4H10) than to light gases such as H2. The gas permeability and solubility coefficients are higher in as‐cast, unaged films than in as‐cast films aged at ambient conditions and increase to a maximum in both unaged and aged as‐cast films after methanol conditioning. For example, the oxygen permeability of a 20‐μm‐thick as‐cast film is initially 100 barrer and decreases to 40 barrer after aging for 1 week at ambient conditions. After methanol treatment, the oxygen permeabilities of unaged and aged films increase to 430 and 460 barrer, respectively. Thicker as‐cast films have higher gas permeabilities than thinner as‐cast films. Propane and n‐butane sorption isotherms suggest significant changes in the nonequilibrium excess free volume in these glassy polymer films due to processing history. For example, the nonequilibrium excess free volume estimated from the sorption data is similar for as‐cast, unaged samples and methanol‐conditioned samples; it is 100% higher in methanol‐conditioned films than in aged, as‐cast films. The sensitivity of permeability to processing history may be due in large measure to the influence of processing history on nonequilibrium excess free volume and free volume distribution. The propane and n‐butane diffusion coefficients are also sensitive to film processing history, presumably because of the dependence of diffusivity on free volume and free volume distribution. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1474–1484, 2000  相似文献   

9.
To simplify the fabrication of multilayer light‐emitting diodes, we prepared a p‐phenylenevinylene‐based polymer capped with crosslinkable styrene through a Wittig reaction. Insoluble poly(p‐phenylenevinylene) derivative (PPVD) films were prepared by a thermal treatment. The photoluminescence and ultraviolet–visible (UV–vis) absorbance of crosslinked films and noncrosslinked films were studied. We also studied the solvent resistance of crosslinked PPV films with UV–vis absorption spectra and atomic force microscopy. Double‐layer devices using crosslinked PPVD as an emitting layer, 2‐(4‐tert‐butylphenyl)‐5‐phenyl‐1,3,4‐oxadiazole (PBD) in poly(methyl methacrylate) as an electron‐transporting layer, and calcium as a cathode were fabricated. A maximum luminance efficiency of 0.70 cd/A and a maximum brightness of 740 cd/m2 at 16 V were demonstrated. A 12‐fold improvement in the luminance efficiency with respect to that of single‐layer devices was realized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2124–2129, 2004  相似文献   

10.
Transparent and flexible gas‐barrier materials have shown broad applications in electronics, food, and pharmaceutical preservation. Herein, we report ultrahigh‐gas‐barrier films with a brick–mortar–sand structure fabricated by layer‐by‐layer (LBL) assembly of XAl‐layered double hydroxide (LDH, X=Mg, Ni, Zn, Co) nanoplatelets and polyacrylic acid (PAA) followed by CO2 infilling, denoted as (XAl‐LDH/PAA)n‐CO2. The near‐perfectly parallel orientation of the LDH “brick” creates a long diffusion length to hinder the transmission of gas molecules in the PAA “mortar”. Most significantly, both the experimental studies and theoretical simulations reveal that the chemically adsorbed CO2 acts like “sand” to fill the free volume at the organic–inorganic interface, which further depresses the diffusion of permeating gas. The strategy presented here provides a new insight into the perception of barrier mechanism, and the (XAl‐LDH/PAA)n‐CO2 film is among the best gas barrier films ever reported.  相似文献   

11.
Dye‐sensitized solar cells (DSCs) with nanotubular TiO2 electrodes of varying thicknesses are compared to DSCs based on conventional nanoparticulate electrodes. Despite the higher degree of order in one‐dimensional nanotubular electrodes, electron transport times and diffusion coefficients, determined under short‐circuit conditions, are comparable to those of nanoparticulate electrodes. The quasi‐Fermi level, however, is much lower in the nanotubes, suggesting a lower concentration of conduction band electrons. This provides evidence for a much higher diffusion coefficient for conduction band electrons in nanotubes than in nanoparticulate films. The electron lifetime and the diffusion length are significantly longer in nanotubular TiO2 electrodes than in nanoparticulate films. Nanotubular electrodes have a trap distribution that differs significantly from nanoparticulate electrodes; they possess relatively deeper traps and have a characteristic energy of the exponential distribution that is more than two times that of nanoparticulate electrodes.  相似文献   

12.
A comprehensive dynamic diffusion model is developed to calculate the diffusion coefficients of low molecular weight penetrants (i.e., α‐olefins) in semi‐crystalline polyolefins from dynamic sorption measurements. The model also takes into account the extent of polymer swelling on the penetrant diffusion flux, resulting in a moving boundary value problem. The free volume theory is employed to calculate the dependence of the diffusion coefficient on the penetrant concentration. The solubilities and diffusivities of ethylene and propylene in semi‐crystalline high density polyethylene films were measured at different temperatures and pressures, using a Rubotherm® magnetic suspension microbalance operated in series with an optical view cell for the measurement of the degree of polymer swelling. It is shown that model predictions are in excellent agreement with the experimental dynamic measurements on the mass uptake of the sorbed species. Moreover, it is shown that the proposed model can predict correctly the diffusion coefficient of α‐olefins in semi‐crystalline polyolefins.

  相似文献   


13.
Transparent and flexible gas‐barrier materials have shown broad applications in electronics, food, and pharmaceutical preservation. Herein, we report ultrahigh‐gas‐barrier films with a brick–mortar–sand structure fabricated by layer‐by‐layer (LBL) assembly of XAl‐layered double hydroxide (LDH, X=Mg, Ni, Zn, Co) nanoplatelets and polyacrylic acid (PAA) followed by CO2 infilling, denoted as (XAl‐LDH/PAA)n‐CO2. The near‐perfectly parallel orientation of the LDH “brick” creates a long diffusion length to hinder the transmission of gas molecules in the PAA “mortar”. Most significantly, both the experimental studies and theoretical simulations reveal that the chemically adsorbed CO2 acts like “sand” to fill the free volume at the organic–inorganic interface, which further depresses the diffusion of permeating gas. The strategy presented here provides a new insight into the perception of barrier mechanism, and the (XAl‐LDH/PAA)n‐CO2 film is among the best gas barrier films ever reported.  相似文献   

14.
Diffusion of antibody protein from hydrogel films and hydrogel encapsulated in a microcapillary was studied. Thin hydrogel films were formed by crosslinking 6-acryloyl-B-O-methylgalactoside withN,N’-methylene-bis-acrylamide and the diffusive transport of monoclonal antimouse IgG-FITC into and out of the hydrated films was measured. Diffusion coefficients in 2 and 4% crosslinked hydrogel films were measured. The measured diffusion constants determined for IgG in both the 2 and 4% hydrogel films were comparable to the free diffusion of IgG in bulk water (D mean ∼ 10-7cm2/s). In addition, 2% crosslinked hydrogels were prepared in a capillary tube and the transport of antimouse IgG-FITC into and out of the hydrated hydrogel was measured. Kinetic analysis indicated that the protein transport through the capillary hydrogel was faster than would be expected for a simple diffusion process. Finally, by utilizing the diffusion of antibody from the capillary hydrogel, transfer of antibody to a silica surface was demonstrated. A capillary hydrogel loaded with antimouse IgG-FITC was used to transfer the protein to a silica surface forming a 30-μm spot of antibody, which was imaged using fluorescence microscopy. These results may lead to the development of a nonlithographic method of patterning antibodies on surfaces for use in integrated microimmunosensors.  相似文献   

15.
Bacterial polyhydroxyalkanoates (PHAs) are perceived to be a suitable alternative to petrochemical plastics because they have similar material properties, are environmentally degradable, and are produced from renewable resources. In this study, the in situ degradation of medium-chain-length PHA (PHAMCL) films in tropical forest and mangrove soils was assessed. The PHAMCL was produced by Pseudomonas putida PGA1 using saponified palm kernel oil (SPKO) as the carbon source. After 112 d of burial, there was 16.7% reduction in gross weight of the films buried in acidic forest soil (FS), 3.0% in the ones buried in alkaline forest soil by the side of a stream (FSst) and 4.5% in those buried in mangrove soil (MS). There was a slight decrease in molecular weight for the films buried in FS but not for the films buried in FSst and in MS. However, no changes were observed for the melting temperature, glass transition temperature, monomer compositions, structure, and functional group analyses of the films from any of the burial sites during the test period. This means that the integral properties of the films were maintained during that period and degradation was by surface erosion. Scanning electron microscopy of the films from the three sites revealed holes on the film surfaces which could be attributed to attack by microorganisms and bigger organisms such as detritivores. For comparison purposes, films of polyhydroxybutyrate (PHB), a short-chain-length PHA, and polyethylene (PE) were buried together with the PHAMCL films in all three sites. The PHB films disintegrated completely in MS and lost 73.5% of their initial weight in FSst, but only 4.6% in FS suggesting that water movement played a major role in breaking up the brittle PHB films. The PE films did not register any weight loss in any of the test sites.  相似文献   

16.
Mesoporous films of platinized carbon nanotube–zirconia–Nafion composite have been used for the immobilization of tris(2,2′‐bipyridyl)ruthenium (II) (Ru(bpy)32+) on an electrode surface to yield a solid‐state electrogenerated chemiluminescence (ECL) sensor. The composite films of Pt–CNT–zirconia–Nafion exhibit much larger pore diameter (3.55 nm) than that of Nafion (2.82 nm) and thus leading to much larger ECL response for tripropylamine (TPA) because of the fast diffusion of the analyte within the films. Due to the conducting and electrocatalytic features of CNTs and Pt nanoparticles, their incorporation into the zirconia–Nafion composite films resulted in the decreased electron transfer resistance within the films. The present ECL sensor based on the Pt–CNT–zirconia–Nafion gave a linear response (R2=0.999) for TPA concentration from 3.0 nM to 1.0 mM with a remarkable detection limit (S/N=3) of 1.0 nM, which is much lower compared to those obtained with the ECL sensors based on other types of sol‐gel ceramic–Nafion composite films such as silica–Nafion and titania–Nafion.  相似文献   

17.
The molecular orientations and dynamics of 2,2,6,6‐tetramethyl‐1‐piperidinyloxyl (TEMPO) radical derivatives with large substituent groups at the 4‐position (4‐X‐TEMPO) in the organic one‐dimensional nanochannels within the nanosized molecular template 2,4,6‐tris(4‐chlorophenoxy)‐1,3,5‐triazine (CLPOT) were examined using ESR. The concentrations of guest radicals, including 4‐methoxy‐TEMPO (MeO‐TEMPO) or 4‐oxo‐TEMPO (TEMPONE), in the CLPOT nanochannels in each inclusion compound (IC) were reduced by co‐including 4‐substituted‐2,2,6,6‐tetramethylpiperidine (4‐R‐TEMP) compounds at a ratio of 1 : 30–1 : 600. At higher temperatures, the guest radicals in each IC underwent anisotropic rotational diffusion in the CLPOT nanochannels. The rotational diffusion activation energy, Ea, associated with MeO‐TEMPO or TEMPONE in the CLPOT nanochannels (6–7 kJ mol?1), was independent of the size and type of substituent group and was similar to the Ea values obtained for TEMPO and 4‐ hydroxy‐TEMPO (TEMPOL) in our previous study. However, in the case in which TEMP was used as a guest compound for dilution (spacer), the tilt of the rotational axis to the principal axis system of the g ‐tensor, and the rotational diffusion correlation time, τR, of each guest radical in the CLPOT nanochannels were different from the case with other 4‐R‐TEMP. These results indicate the possibility of controlling molecular orientation and dynamics of guest radicals in CLPOT ICs through the appropriate choice of spacer. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
An investigation of two different Langmuir–Blodgett (LB) films, [4‐(6‐oxo‐hexacarboxylic acid)‐3‐trifluoromethyl‐azobenzene] (FAzo5COOH) and copolymer poly{2‐hydroxyethylmethacrylate}9co‐{6‐[3‐((trifluoromethyl)phenyl)azo] phenoxylhe‐Xylmeth‐acrylate}1(PHEMA‐co‐PFAzoPHA) films, is reported. The different structural behavior of the two types of films was first analyzed in detail by UV–visible spectroscopy. The different wettability of the films under UV–visible irradiation was subsequently studied by the contact‐angle technique. A large change of the contact angle (CA) was observed on PHEMA‐co‐PFAzoPHA films compared to the FAzo5COOH films before and after UV irradiation. The films were finally characterized by atomic force microscopy (AFM), and the morphologies were observed under UV–visible irradiation. The results indicate that the molecules are densely packed in the FAzo5COOH films compared to the PHEMA‐co‐PFAzoPHA films. It is attributed to the strong interaction between neighboring azobenzene moieties in the FAzo5COOH LB films of the smaller molecules. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Gallic acid (GA)–loaded cellulose acetate (CA) nanofiber mats with 10 to 40 wt.% GA contents (based on the weight of CA) were fabricated by electrospinning. The effects of GA contents and applied potential on the morphology and the average diameters of fibers were studied. The electrospun fiber mats containing 20 and 40 wt.% GA were investigated for their potential use as carrier of GA in wound dressing application. The GA‐loaded CA films were prepared by solvent casting technique for use in comparative studies. Determination of the release characteristics of GA from the GA‐loaded fiber mats and films was carried out by the total immersion and the transdermal diffusion through a pig skin method in acetate buffer solution (pH 5.5) or normal saline (pH 7.0) at either 32 or 37°C, respectively. In the total immersion method, the maximum amounts of the GA released from the fiber mats containing 20 and 40 wt.% GA in the acetate buffer were approximately 97% and 71% (based on the weight of initial GA), while those of the GA released into the normal saline were approximately 96% and 81%, respectively. Lower values were observed in the experiments of the transdermal diffusion through a pig skin method. The corresponding GA‐loaded CA films showed the lower amounts of GA released into media. The as‐loaded and the as‐released GA remained its antioxidant activity as investigated by 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) assay. Lastly, the GA‐loaded CA fiber mats exhibited antibacterial activity against Staphylococcus aureus, which showed the potential for use as wound dressing materials.  相似文献   

20.
A novel monomer, ethyl 4‐[4‐(11‐methacryloyloxyundecyloxy)phenyl azobenzoyl‐oxyl] benzoate, containing a photoisomerizable N?N group was synthesized. The monomer was further diblock copolymerized with methyl methacrylate. Amphiphilic diblock copolymer poly(methyl methacrylate‐block‐ethyl 4‐[4‐(11‐methacryloyloxyundecyloxy)phenyl azobenzoyl‐oxyl] benzoate ( PMMA ‐ b ‐ PAzoMA ) was synthesized using atom transfer radical polymerization. The reverse micelles with spherical construction were obtained with 2 wt % of the diblock copolymer in a THF/H2O mixture of 1:2. Under alternating UV and visible light illumination, reversible changes in micellar structure between sphere and rod‐like particles took place as a result of the reversible E‐Z photoisomerization of azobenzene segments in PMMA ‐ b ‐ PAzoMA . Microphase separation of the amphiphilic diblock copolymer in thin films was achieved through thermal and solvent aligning methods. The microphases of the annealed thin films were investigated using atom force microscopy topology and scanning electron microscopy analyses. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1142–1148, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号