首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of nido‐[1,2‐(Cp*RuH)2B3H7] ( 1 a , Cp*=η5‐C5Me5) with [Mo(CO)3(CH3CN)3] under mild conditions yields the new metallaborane arachno‐[(Cp*RuCO)2B2H6] ( 2 ). Compound 2 catalyzes the cyclotrimerization of a variety of internal‐ and terminal alkynes to yield mixtures of 1,3,5‐ and 1,2,4‐substituted benzenes. The reactivities of nido‐ 1 a and arachno‐ 2 with alkynes demonstrates that a change in geometry from nido to arachno drives a change in the reaction from alkyne‐insertion to catalytic cyclotrimerization, respectively. Density functional calculations have been used to evaluate the reaction pathways of the cyclotrimerization of alkynes catalyzed by compound 2 . The reaction involves the formation of a ruthenacyclic intermediate and the subsequent alkyne‐insertion step is initiated by a [2+2] cycloaddition between this intermediate and an alkyne. The experimental and quantum‐chemical results also show that the stability of the metallacyclic intermediate is strongly dependent on the nature of the substituents that are present on the alkyne.  相似文献   

2.
The two title crystalline compounds, viz.meso‐bis{η5‐1‐[1‐(dimethylamino)ethenyl]‐3‐(trimethylsilyl)cyclopentadienyl}iron(II), [Fe(C12H20NSi)2], (II), and meso‐bis{η5‐1‐[1‐(dimethylamino)ethenyl]‐3‐(trimethylsilyl)cyclopentadienyl}cobalt(II), [Co(C12H20NSi)2], (III), were obtained by the reaction of lithium 1‐[1‐(dimethylamino)ethenyl]‐3‐(trimethylsilyl)cyclopentadienide with FeCl2 and CoCl2, respectively. For (II), the trimethylsilyl‐ and dimethylaminoethenyl‐substituted cyclopentadienyl (Cp) rings present a nearly eclipsed conformation, and the two pairs of trimethylsilyl and dimethylaminoethenyl substituents on the Cp rings are arranged in an interlocked fashion. In the case of (III), the same substituted Cp rings are perfectly staggered leading to a crystallographically centrosymmetric molecular structure, and the two trimethylsilyl and two dimethylaminoethenyl substituents are oriented in opposite directions, respectively, with the trimethylsilyl group of one Cp ring and the dimethylaminoethenyl group of the other Cp ring arranged more closely than in (II).  相似文献   

3.
It has been established that a cyclopentadienyl (Cp) RhIII complex with two aryl groups and a pendant amide moiety catalyzes the formal Lossen rearrangement/alkenylation cascade of N-pivaloyl heterole carboxamides with internal alkynes, leading to alkenylheteroles. Interestingly, the use of sterically demanding internal alkynes afforded not the alkenylation but the [3+2] annulation products ([5,5]-fused heteroles). In these reactions, the pendant amide moiety of the CpRhIII complex may accelerate the formal Lossen rearrangement. The use of five-membered heteroles may deter reductive elimination to form strained [5,5]-fused heteroles; instead, protonation proceeds to give the alkenylation products. Bulky alkyne substituents accelerate the reductive elimination to allow the formation of the [5,5]-fused heteroles.  相似文献   

4.
Reactions of Group 4 metallocene alkyne complexes [Cp′2M(η2‐Me3SiC2SiMe3)] ( 1 : M=Zr, Cp′=Cp*=η5‐pentamethylcyclopentadienyl; 2 a : M=Ti, Cp′=Cp*, and 2 b : M=Ti, Cp′2=rac‐(ebthi)=rac‐1,2‐ethylene‐1,1′‐bis(η5‐tetrahydroindenyl)) with diphenylacetonitrile (Ph2CHCN) and of the seven‐membered zirconacyclocumulene 3 with phenylacetonitrile (PhCH2CN) were investigated. Different compounds were obtained depending on the metal, the cyclopentadienyl ligand and the reaction temperature. In the first step, Ph2CHCN coordinated to 1 to form [Cp*2Zr(η2‐Me3SiC2SiMe3)(NCCHPh2)] ( 4 ). Higher temperatures led to elimination of the alkyne, coordination of a second Ph2CHCN and transformation of the nitriles to a keteniminate and an imine ligand in [Cp*2Zr(NC2Ph2)(NCHCHPh2)] ( 5 ). The conversion of 4 to 5 was monitored by using 1H NMR spectroscopy. The analogue titanocene complex 2 a eliminated the alkyne first, which led directly to [Cp*2Ti(NC2Ph2)2] ( 6 ) with two keteniminate ligands. In contrast, the reaction of 2 b with diphenylacetonitrile involved a formal coupling of the nitriles to obtain the unusual four‐membered titanacycle 7 . An unexpected six‐membered fused zirconaheterocycle ( 8 ) resulted from the reaction of 3 with PhCH2CN. The molecular structures of complexes 4 , 5 , 6 , 7 and 8 were determined by X‐ray crystallography.  相似文献   

5.
The reaction of nido-[1,2-(Cp*RuH)(2)B(3)H(7)] (1a, Cp*=η(5)-C(5)Me(5)) with [Mo(CO)(3)(CH(3)CN)(3)] under mild conditions yields the new metallaborane arachno-[(Cp*RuCO)(2)B(2)H(6)] (2). Compound 2 catalyzes the cyclotrimerization of a variety of internal- and terminal alkynes to yield mixtures of 1,3,5- and 1,2,4-substituted benzenes. The reactivities of nido-1a and arachno-2 with alkynes demonstrates that a change in geometry from nido to arachno drives a change in the reaction from alkyne-insertion to catalytic cyclotrimerization, respectively. Density functional calculations have been used to evaluate the reaction pathways of the cyclotrimerization of alkynes catalyzed by compound 2. The reaction involves the formation of a ruthenacyclic intermediate and the subsequent alkyne-insertion step is initiated by a [2+2] cycloaddition between this intermediate and an alkyne. The experimental and quantum-chemical results also show that the stability of the metallacyclic intermediate is strongly dependent on the nature of the substituents that are present on the alkyne.  相似文献   

6.
Metallocene dihalides and derivatives thereof are of great interest as precursors for catalysts in polymerization reactions, as antitumor agents and, due to their increased stability, as suitable starting materials in salt metathesis reactions and the generation of metallocene fragments. We report the synthesis and structural characterization of a series of eleven substituted bis(η5‐cyclopentadienyl)titanium dihalides, namely bis[η5‐1‐(diphenylmethyl)cyclopentadienyl]difluoridotitanium(IV), [Ti(C18H15)2F2], bis{η5‐1‐[bis(4‐methylphenyl)methyl]cyclopentadienyl}difluoridotitanium(IV), [Ti(C20H19)2F2], and bis{η5‐1‐[bis(adamantan‐2‐yl)methyl]cyclopentadienyl}difluoridotitanium(IV), [Ti(C15H19)2F2], together with the bromide and iodide analogues, and the chloride analogues of the diphenylmethyl and adamantyl complexes. These eleven complexes were prepared by the reaction of the corresponding bis(η51‐pentafulvene)titanium complexes with different hydrogen halides (Cl, Br and I). The titanocene fluorides become available via chloride–fluoride exchange reactions.  相似文献   

7.
The reactions of the Group 4 metallocene dichlorides [Cp′2MCl2] ( 1 a : M=Ti, Cp′=Cp*=η5‐pentamethylcyclopentadienyl, 1 b : M=Zr, Cp′=Cp=η5‐cyclopentadienyl) with lithiated MesCH2?C?N gave [Cp*2TiCl(N=C=C(HMes))] ( 3 ; Mes=mesityl) in the case of 1 a . For compound 1 b , a nitrile–nitrile coupling resulted in a five‐membered bridge in 4 . The reaction of the metallocene alkyne complex [Cp*2Zr(η2‐Me3SiC2SiMe3)] ( 2 ) with PhCH2?C?N led in the first step to the unstable product [Cp*2Zr(η2‐Me3SiC2SiMe3)(NC?CH2Ph)] ( 5 ). After the elimination of the alkyne, a mixture of products was formed. By variation of the solvent and the reaction temperature, three compounds were isolated: a diazadiene complex 6 , a bis(keteniminate) complex 7 , and 8 with a keteniminate ligand and a five‐membered metallacycle. Subsequent variation of the Cp ligand and the metal center by using [Cp2Zr] and [Cp*2Ti] with Me3SiC2SiMe3 in the reactions with PhCH2?C?N gave complex mixtures.  相似文献   

8.
A general regioselective rhodium‐catalyzed head‐to‐tail dimerization of terminal alkynes is presented. The presence of a pyridine ligand (py) in a Rh–N‐heterocyclic‐carbene (NHC) catalytic system not only dramatically switches the chemoselectivity from alkyne cyclotrimerization to dimerization but also enhances the catalytic activity. Several intermediates have been detected in the catalytic process, including the π‐alkyne‐coordinated RhI species [RhCl(NHC)(η2‐HC?CCH2Ph)(py)] ( 3 ) and [RhCl(NHC){η2‐C(tBu)?C(E)CH?CHtBu}(py)] ( 4 ) and the RhIII–hydride–alkynyl species [RhClH{? C?CSi(Me)3}(IPr)(py)2] ( 5 ). Computational DFT studies reveal an operational mechanism consisting of sequential alkyne C? H oxidative addition, alkyne insertion, and reductive elimination. A 2,1‐hydrometalation of the alkyne is the more favorable pathway in accordance with a head‐to‐tail selectivity.  相似文献   

9.
《化学:亚洲杂志》2017,12(17):2245-2257
The [2+2+2] intermolecular carbocyclization reactions between 1,6‐enynes and alkynes catalyzed by [RuCl(cod)(Cp*)] (cod=1,5‐cyclooctadiene, Cp*=pentamethylcyclopentadienyl) are reported to provide bicyclohexa‐1,3‐dienes. The presented reaction conditions are compatible with internal and terminal alkynes and the chemo‐ and regioselectivity issues are controlled by the presence of substituents at the propargyl carbon center of the alkyne(s) partner(s).  相似文献   

10.
A route to directly access mixed Al–Fe polyphosphide complexes was developed. The reactivity of pentaphosphaferrocene, [Cp*Fe(η5‐P5)] (Cp*=C5Me5), with two different low‐valent aluminum compounds was investigated. The steric and electronic environment around the [AlI] centre are found to be crucial for the formation of the resulting Al–Fe polyphosphides. Reaction with the sterically demanding [Dipp‐BDIAlI] (Dipp‐BDI={[2,6‐iPr2C6H3NCMe]2CH}?) resulted in the first Al‐based neutral triple‐decker type polyphosphide complex. For [(Cp*AlI)4], an unprecedented regioselective insertion of three [Cp*AlIII]2+ moieties into two adjacent P?P bonds of the cyclo‐P5 ring of [Cp*Fe(η5‐P5)] was observed. The regioselectivity of the insertion reaction could be rationalized by isolating an analogue of the reaction intermediate stabilized by a strong σ‐donor carbene.  相似文献   

11.
Complexes of Titanium — Synthesis, Structure, and Fluxional Behaviour of CpTi{η6‐C5H4=C(p‐Tol)2}Cl (Cp′ = Cp*, Cp) The reaction of Cp′TiCl3 (C′ = Cp* or Cp) with magnesium and 6, 6‐di‐para‐tolylpentafulvene generates good yields of pentafulvene complexes Cp*Ti{η6‐C5H4=C(p‐Tol)2}Cl ( 4 ) and CpTi{η6‐C5H4=C(p‐Tol)2}Cl ( 5 ), respectively. The crystal and molecular structure of 4 have been determined from X‐ray data and exhibits compared to known η6‐pentafulvene complexes an unusual large Ti—C(p‐Tol)2 (Fv)‐distance (2.535(5)Å) evoked by the bulky substituents at the exocyclic carbon. Dynamic 1H‐NMR and spin saturation transfer experiments point out a rotation of the fulvene ligand around the Ti—Ct2 axis (Ct2 = centroid of the fulvene ring carbon atoms) with an activation barrier ΔGC = 60.6 ± 0.5 kJ mol−1 (TC = 314 ± 2 K). For 5 this barrier is significantly larger. Analogous dynamic behaviour is well known for diene complexes, but to our knowledge, it is here first‐time described for a pentafulvene complex.  相似文献   

12.
The synthesis and crystal structures of two dinuclear titanocene hydride complexes are reported. Both complexes, namely bis(η5‐(di‐para‐tolylmethyl)cyclopentadienyl)titanium hydride dimer, [(η5‐C20H19)2Ti(μ‐H)]2 ( 2a ), and bis(η5‐2‐adamantylcyclopentadienyl)‐titanium hydride dimer, [(η5‐C15H19)2Ti(μ‐H)]2 ( 2b ), are formed via activation of molecular hydrogen by the corresponding bis(η51‐pentafulvene)titanium complexes 1a and 1b at ambient temperatures and pressures in high yields. The hydride complexes 2a and 2b exhibit planar [Ti2H2] cores and, as a result of the heterolytic cleavage of molecular hydrogen, substituted Cp Ligands were formed during the reaction.  相似文献   

13.
Potassium reduction of iron– and ruthenium–penta(organo)[60]fullerene complexes, [M(η5‐C60R5)(η5‐Cp)] ( 1 a : M=Fe, R=Ph; 1 b : M=Fe, R=Me; 1 c : M=Ru, R=Ph; 1 d : M=Ru, R=Me; Cp=C5H5) gave mono‐ and dianions of these complexes. Treatment of the dianion 1 a with α‐bromodiphenylmethane gave three different iron–hepta(organo)[60]fullerenes, [Fe{η5‐C60Ph5(CHPh2)2}(η5‐Cp)], as a mixture of regioisomers. All three compounds were fully characterized by physical methods, including X‐ray crystallography and electrochemical measurements. One of the three compounds contains a new hoop‐shaped condensed aromatic system.  相似文献   

14.
A series of η5‐cyclopentadienylruthenium complexes, [(η5‐C5MenH5?n)RuCl(cod)] (cod=1,5‐cyclooctadiene), are evaluated as catalysts for the cycloaddition of 1,6‐diynes with alkynes. As a result, we unexpectedly found that the complex bearing the 1,2,4‐Me3Cp ligand is the most efficient catalyst in terms of turnover number (TON) for the cycloaddition of a bulky diiododiyne with acetylene, recording the highest TON of 970 with a catalyst loading of 0.1 mol %. To obtain insight into this result, we evaluate the electron richness of all complexes by cyclic voltammetric analyses, which indicate that the electron density of the ruthenium center increases with an increase in methyl substitution on the Cp′ ligands. The initial rate (up to 10 % conversion) of the cycloaddition was then measured using 1H NMR spectroscopy. The initial rate is found to decrease as the number of methyl substituents increases. According to these results, we assumed that the optimum catalytic performance exhibited by the 1,2,4‐trimethylcyclopentadienyl complex can be attributed to its robustness under the catalytic cycloaddition conditions. The steric and electronic effects of the Cp′ ligands are also investigated in terms of the regioselectivity of the cycloaddition of an unsymmetrical diyne and in terms of the chemoselectivity in the cycloaddition of a 1,6‐heptadiyne with norbornene.  相似文献   

15.
The reactions of the Group 4 metallocene alkyne complexes, [Cp*2M(η2‐Me3SiC2SiMe3)] ( 1 a : M=Ti, 1 b : M=Zr, Cp*=η5‐pentamethylcyclopentadienyl), with the ferrocenyl nitriles, Fc?C?N and Fc?C?C?C?N (Fc=Fe(η5‐C5H5)(η5‐C5H4)), is described. In case of Fc?C?N an unusual nitrile–nitrile C?C homocoupling was observed and 1‐metalla‐2,5‐diaza‐cyclopenta‐2,4‐dienes ( 3 a , b ) were obtained. As the first step of the reaction with 1 b , the nitrile was coordinated to give [Cp*2Zr(η2‐Me3SiC2SiMe3)(N?C‐Fc)] ( 2 b ). The reactions with the 3‐ferrocenyl‐2‐propyne‐nitrile Fc?C?C?C?N lead to an alkyne–nitrile C?C coupling of two substrates and the formation of 1‐metalla‐2‐aza‐cyclopenta‐2,4‐dienes ( 4 a , b ). For M=Zr, the compound is stabilized by dimerization as evidenced by single‐crystal X‐ray structure analysis. The electrochemical behavior of 3 a , b and 4 a , b was investigated, showing decomposition after oxidation, leading to different redox‐active products.  相似文献   

16.
The reaction of [Cp′′′Co(η4‐P4)] ( 1 ) (Cp′′′=1,2,4‐tBu3C5H2) with MeNHC (MeNHC=1,3,4,5‐tetramethylimidazol‐2‐ylidene) leads through NHC‐induced phosphorus cation abstraction to the ring contraction product [(MeNHC)2P][Cp′′′Co(η3‐P3)] ( 2 ), which represents the first example of an anionic CoP3 complex. Such NHC‐induced ring contraction reactions are also applicable for triple‐decker sandwich complexes. The complexes [(Cp*Mo)2(μ,η6:6‐E6)] ( 3 a , 3 b ) (Cp*=C5Me5; E=P, As) can be transformed to the complexes [(MeNHC)2E][(Cp*M)2(μ,η3:3‐E3)(μ,η2:2‐E2)] ( 4 a , 4 b ), with 4 b representing the first structurally characterized example of an NHC‐substituted AsI cation. Further, the reaction of the vanadium complex [(Cp*V)2(μ,η6:6‐P6)] ( 5 ) with MeNHC results in the formation of the unprecedented complexes [(MeNHC)2P][(Cp*V)2(μ,η6:6‐P6)] ( 6 ), [(MeNHC)2P][(Cp*V)2(μ,η5:5‐P5)] ( 7 ) and [(Cp*V)2(μ,η3:3‐P3)(μ,η1:1‐P{MeNHC})] ( 8 ).  相似文献   

17.
The catalytic activity of a series of ruthenium(II) complexes in azide-alkyne cycloadditions has been evaluated. The [Cp*RuCl] complexes, such as Cp*RuCl(PPh 3) 2, Cp*RuCl(COD), and Cp*RuCl(NBD), were among the most effective catalysts. In the presence of catalytic Cp*RuCl(PPh 3) 2 or Cp*RuCl(COD), primary and secondary azides react with a broad range of terminal alkynes containing a range of functionalities selectively producing 1,5-disubstituted 1,2,3-triazoles; tertiary azides were significantly less reactive. Both complexes also promote the cycloaddition reactions of organic azides with internal alkynes, providing access to fully-substituted 1,2,3-triazoles. The ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) appears to proceed via oxidative coupling of the azide and alkyne reactants to give a six-membered ruthenacycle intermediate, in which the first new carbon-nitrogen bond is formed between the more electronegative carbon of the alkyne and the terminal, electrophilic nitrogen of the azide. This step is followed by reductive elimination, which forms the triazole product. DFT calculations support this mechanistic proposal and indicate that the reductive elimination step is rate-determining.  相似文献   

18.
The reaction of different metallocene fragments [Cp2M] (Cp=η5‐cyclopentadienyl, M=Ti, Zr) with diferrocenylacetylene and 1,4‐diferrocenylbuta‐1,3‐diyne is described. The titanocene complexes form the highly strained three‐ and five‐membered ring systems [Cp2Ti(η2‐FcC2Fc)] ( 1 ) and [Cp2Ti(η4‐FcC4Fc)] ( 2 ) (Fc=[Fe(η5‐C5H4)(η5‐C5H5)]) by addition of the appropriate alkyne or diyne to Cp2Ti. Zirconocene precursors react with diferrocenyl‐ and ferrocenylphenylacetylene under C? C bond coupling to yield the metallacyclopentadienes [Cp2Zr(C4Fc4)] ( 3 ) and [Cp2Zr(C4Fc2Ph2)] ( 5 ), respectively. The exchange of the zirconocene unit in 3 by hydrogen atoms opens the route to the super‐crowded ferrocenyl‐substituted compound tetraferrocenylbutadiene ( 4 ). On the other hand, the reaction of 1,4‐diferrocenylbuta‐1,3‐diyne with zirconocene complexes afforded a cleavage of the central C? C bond, and thus, dinuclear [{Cp2Zr(μ‐η12‐C?CFc)}2] ( 6 ) that consists of two zirconocene acetylide groups was formed. Most of the complexes were characterized by single‐crystal X‐ray crystallography, showing attractive multinuclear molecules. The redox properties of 3 , 5 , and 6 were studied by cyclic voltammetry. Upon oxidation to 3 n+, 5 n+, and 6 n+ (n=1–3), decomposition occured with in situ formation of new species. The follow‐up products from 3 and 5 possess two or four reversible redox events pointing to butadiene‐based molecules. However, the dinuclear complex 6 afforded ethynylferrocene under the measurement conditions.  相似文献   

19.
Details of the direct synthesis of cationic Ru(II)(η5‐Cp)(η6‐arene) complexes from ruthenocene using microwave heating are reported. Developed for the important catalyst precursor [Ru(II)(η5‐Cp)(η6‐1‐4,4a,8a‐naphthalene)][PF6] reaction time could be shortened from three days to 15 min. The method was extended to [Ru(II)(η6‐benzene)(η5‐Cp)][PF6], [Ru(II)(η5‐Cp)(η6‐toluene)][PF6], [Ru(II)(η5‐Cp)(η6‐mesitylene)][PF6], [Ru(II)(η5‐Cp)(η6‐hexamethylbenzene)][PF6], [Ru(II)(η5Cp)(η6‐indane)][PF6], [Ru(II)(η5‐Cp)(η6‐2,6‐dimethylnaphthalene)][PF6], and [Ru(II)(η5‐Cp)(η6‐pyrene)][PF6]. 1‐methylnaphthalene and 2,3‐dimethylnaphthalene afforded mixtures of regioisomeric complexes. [Ru(Cp)(CH3CN)3][PF6], derived from the naphthalene precursor provided access to the cationic RuCp complexes of naphthoquinone, tetralindione, 1,4‐dihydroxynaphthalene, and 1,4‐dimethoxynaphthalene. Reduction of the tetralindione complex afforded selectively the endo,endo diol derivative. X‐Ray structures of five complexes are reported.  相似文献   

20.
The reaction of [CpRu(CH3CN)3][PF6], [Cp*RuCl] n , and [CpFRuCl]n with 1,3-diformylindene results in the predominant formation of zwitter-ionic arene-cyclopentadienyl complexes {η6-1,3-(CHO)2C9H5}RuCp (Cp = C5H5), {η6-1,3-(CHO)2C9H5}RuCp* (Cp* = C5Me5), and {η6-1,3-(CHO)2C9H5}RuCpF (CpF = C5Me4CF3), respectively. The ruthenocenes {η5-1,3-(CHO)2C9H5}RuCp, {η5-1,3-(CHO)2C9H5}RuCp*, and {η5-1,3-(CHO)2C9H5}RuCpF were synthesized by the reaction of 1,3-diformylindenyl potassium with [CpRu(CH3CN)3][PF6], [Cp*RuCl] n , and [CpFRuCl] n .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号