首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

2.
This work demonstrates gold nanoparticles (AuNPs)/functionalized multiwalled carbon nanotubes (f‐MWCNT) composite film modified gold electrode via covalent‐bonding interaction self‐assembly technique for simultaneous determination of salsolinol (Sal) and uric Acid (UA) in the presence of high concentration of ascorbic acid (AA). In pH 7.0 PBS, the composite film modified electrode exhibits excellent voltammetric response for Sal and UA, while AA shows no voltammetric response. The oxidation peak current is linearly increased with concentrations of Sal from 0.24–11.76 μmol L?1 and of UA from 3.36–96.36 μmol L?1, respectively. The detection limits of Sal and UA is 3.2×10?8 mol L?1 and 1.7×10?7 mol L?1 , respectively.  相似文献   

3.
A simple and sensitive method for simultaneously measuring dopamine (DA), ascorbic acid (AA), and uric acid (UA) using a poly(1‐aminoanthracene) and carbon nanotubes nanocomposite electrode is presented. The experimental parameters for composite film synthesis as well as the variables related to simultaneous determination of DA, AA, and UA were optimized at the same time using fractional factorial and Doehlert designs. The use of carbon nanotubes and poly(1‐aminoanthracene) in association with a cathodic pretreatment led to three well‐defined oxidation peaks at potentials around ?0.039, 0.180 and 0.351 V (vs. Ag/AgCl) for AA, DA, and UA, respectively. Using differential pulse voltammetry, calibration curves for AA, DA, and UA were obtained over the range of 0.16–3.12×10?3 mol L?1, 3.54–136×10?6 mol L?1, and 0.76–2.92×10?3 mol L?1, with detection limits of 3.95×10?5 mol L?1, 2.90×10?7 mol L?1, and 4.22×10?5 mol L?1, respectively. The proposed method was successfully applied to determine DA, AA, and UA in biological samples with good results.  相似文献   

4.
《Electroanalysis》2017,29(7):1691-1699
The simultaneous voltammetric determination of melatonin (MT) and pyridoxine (PY) has been carried out at a cathodically pretreated boron‐doped diamond electrode. By using cyclic voltammetry, a separation of the oxidation peak potentials of both compounds present in mixture was about 0.47 V in Britton‐Robinson buffer, pH 2. The results obtained by square‐wave voltammetry allowed a method to be developed for determination of MT and PY simultaneously in the ranges 1–100 μg mL−1 (4.3×10−6–4.3×10−4 mol L−1) and 10–175 μg mL−1 (4.9×10−5–8.5×10−4 mol L−1), with detection limits of 0.14 μg mL−1 (6.0×10−7 mol L−1) and 1.35 μg mL−1 (6.6×10−6 mol L−1), respectively. The proposed method was successfully to the dietary supplements samples containing these compounds for health‐caring purposes.  相似文献   

5.
《Analytical letters》2012,45(6):1046-1054
The determination of sildenafil citrate using differential pulse voltammetry and a cathodically pre-treated boron-doped diamond electrode is described. The obtained analytical curve is linear in the sildenafil concentration range 7.3 × 10?7 ? 7.3 × 10?6 mol L?1 in a 0.1 mol L?1 H2SO4, with a detection limit of 6.4 × 10?7 mol L?1. The proposed method, which is fast and simple to carry out, was successfully applied in the determination of sildenafil citrate in Viagra® pharmaceutical formulations, with results in close agreement (at 95% confidence level) with those obtained using a comparative HPLC method.  相似文献   

6.
A new sensitive method for the determination of lipoic acid (LA) in selected food items based on its reaction with Mukaiyama reagent (2-chloro-1-methylpyridinium iodide, CMPI) was developed. It was stated that CMPI reacts with reduced form of lipoic acid (dihydrolipoic acid, DHLA) and the stable product is produced. The spectrum of the labeled form of DHLA exhibits new band at 312?nm. Based on its spectral characteristics new spectrophotometric and UV–high-performance liquid chromatography (HPLC) methods of LA determination were elaborated. Both methods allowed determination of the analyte in the concentration range of 5?×?10?6–1?×?10?4?mol?L?1 with limit of detection 0.39?×?10?6 and 0.77?×?10?6?mol?L?1 for spectrophotometric and HPLC method, respectively. The practical usability of newly developed methods was checked by determination of lipoic acid contents in its pharmaceutical preparate Revitanerw. The proposed method was precise and accurate. The relative error of determination did not exceed ±0.067%. As chromatographic method allowed the determination of analyte in the presence of complex matrix, it was applied for assay of free fraction of α-lipoic acid in selected food items. A procedure of LA isolation from biological matrix was developed. The extraction with dichloromethane allowed quantitative recovery at 102.94?±?4.20%. The green barley appeared to be the richest source of LA.  相似文献   

7.
A new method using differential pulse adsorptive stripping voltammetry for the determination of atrazine (ATZ) in natural water samples using a bismuth film electrode (BiFE) is proposed. The calibration curve was linear in the atrazine concentration range from 6.7×10?7 to 2.0×10?5 mol L?1, with a limit of detection (LOD) of 1.4×10?7 mol L?1. The proposed electrode was applied for atrazine determination with satisfactory results compared with a high‐performance liquid chromatography method (HPLC).  相似文献   

8.
Dopamine (DA) is a significant neurotransmitter in the central nervous system, coexisting with uric acid (UA) and ascorbic acid (AA). UA and AA are easily oxidizable compounds having potentials close to that of DA for electrochemical analysis, resulting in overlapping voltammetric response. In this work, a novel molecularly imprinted (MI) electrochemical sensor was proposed for selective determination of DA (in the presence of up to 80‐fold excess of UA and AA), relying on gold nanoparticles (Aunano)‐decorated glassy carbon (GC) electrode coated with poly(carbazole (Cz)‐co‐aniline (ANI)) copolymer film incorporating DA as template (DA imprinted‐GC/P(Cz‐co‐ANI)‐Aunano electrode, DA‐MIP‐Aunano electrode). The DA recognizing sensor electrode showed great electroactivity for analyte oxidation in 0.2 mol L?1 pH 7 phosphate buffer. Square wave voltammetry (SWV) was performed within 10?4–10?5 mol L?1 of DA, of which the oxidation peak potential was observed at 0.16 V. The limit of detection (LOD) and limit of quantification (LOQ) were 2.0×10?6 and 6.7×10?6 mol L?1, respectively. Binary and ternary synthetic mixtures of DA‐UA, DA‐AA and DA‐UA‐AA yielded excellent recoveries for DA. Additionally, DA was quantitatively recovered from a real sample of bovine serum spiked with DA, and determined in concentrated dopamine injection solution. The developed SWV method was statistically validated against a literature potentiodynamic method using a caffeic acid modified‐GC electrode.  相似文献   

9.
A novel voltammetric method using the Ppyox/NFR/Au (poly pyrrole – nuclear fast red – gold) modified electrode was developed for simultaneous measurement of various combinations of ascorbic acid (AA) and methyldopa (MDA). Polypyrrole film was prepared by incorporation of nuclear fast red (NFR) as doping anion, during the electropolymerization of pyrrole onto a gold (Au) electrode in aqueous solution using cyclic voltammetric (CV) method, and then it was overoxidized at constant potential. Differential pulse voltammetry was utilized for the measurement of both analytes using modified electrode. Well‐separated voltammetric peaks were observed for ascorbic acid (AA) and methyldopa at the Ppyox/NFR/Au modified electrodes with peak separation of 0.210 V. It has been found that under optimum condition (pH 3.0), the oxidation of AA and MDA at the surface of the electrode occurs at a potential about 260 and 50 mV less positive than unmodified Au electrode respectively. The current catalytic oxidation peaks showed a linear dependent on the concentration of AA and MDA in the range of 9.0×10?6 to 1.0×10?3 and 1.0×10?7 to 2.0×10?5 mol L?1 respectively. The detection limit of 5.8×10?6 and 5.0×10?8 mol L?1 (S/N=3) were obtained for AA and MDA respectively. The modified electrode was used for determination of AA and MDA in some real samples such as human serum and tablet.  相似文献   

10.
《Electroanalysis》2006,18(15):1457-1462
This work describes an electroanalytical method for determining gold(I) thiomalate, aurothiomalate, widely used for treatment of reumatoid arthiritis, using a screen‐printed carbon electrode (SPCE). Aurothiomalate (AuTM) was determined indirectly at the same electrode by accumulating it first at ?1.5 V vs. printed carbon. At this potential in the adsorbed state, the AuTM is reduced to Au(0), which is then oxidized at two steps at ?0.22 V and +0.54 V on SPCE. Using optimized conditions of 60 s deposition time, ?1.5 V (vs. printed carbon) accumulation potential, 100 mV s?1 scan rate, linear calibration graphs can be obtained by monitoring the peak at +0.54 V for AuTM in HCl 0.1 mol L?1 from 1.43×10?6 to 1.55×10?4 mol L?1. A limit of detection obtained was 6.50×10?7 mol L?1, and the relative standard deviation from five measurements of 3.0×10?5 mol L?1 AuTM is 4.5%. The method was successfully applied for AuTM determination in human urine sample.  相似文献   

11.
An adsorptive stripping voltammetric procedure for the determination of cobalt in a complex matrices at an in situ plated lead film electrode was described. The procedure exploits the enhancement effect of a cobalt peak observed in the system Co(II)–nioxime–piperazine‐1,4‐bis(2‐ethanesulfonic acid)–cetyltrimethylammonium bromide. The calibration graph was linear from 5×10?10 to 2×10?8 mol L?1 and from 1×10?10 to 1×10?9 mol L?1 for the accumulation times 120 and 600 s, respectively. The detection limit (based on the 3 σ criterion) for Co(II) following accumulation time of 600 s was 1.1×10?11 mol L?1. The interference of high concentrations of foreign ions and surfactants was studied.  相似文献   

12.
A bare glassy carbon electrode is applied to nickel determination by adsorptive stripping voltammetry in the presence of dimethylglyoxime as a complexing agent. A procedure of nickel determination and electrode regeneration was proposed. The calibration graph for Ni(II) for an accumulation time of 120?s was linear from 2?×?10?9 to 1?×?10?7?mol?L?1. The detection limit was 8.2?×?10?10?mol?L?1. The relative standard deviation for a solution containing 2?×?10?8?mol?L?1 of Ni(II) was 4.1%. The proposed procedure was applied for Ni(II) determination in certified water reference materials.  相似文献   

13.
An efficient voltammetric method was developed for the determination of maleic acid at a silver amalgam paste electrode (AgA‐PE) in Britton–Robinson buffer pH 2.0. The experimental parameters, such as pH of Britton–Robinson buffer, type of the supporting electrolyte and activation of the electrode surface were optimized. Under the optimal conditions, a linear response was observed over the 2×10?6–1×10?4 mol L?1 maleic acid concentration range, determination limit being 5×10?7 mol L?1. A highly stable response, with a relative standard deviation (RSD) of 1.6% for 45 repetitive measurements of 1×10?4 mol L?1 maleic acid showed that there was no apparent surface passivation indicating the suitability of the method. The method was successfully applied for direct determination of maleic acid in drinking and river water.  相似文献   

14.
A cobalt oxide nanoparticles (Co3O4NPs) and multi walled carbon nanotubes (MWCNTs) modified carbon paste electrodes were used to study the electrochemical behavior of linagliptin and empagliflozin in Britton Robinson buffer solution of pH 8.0 using cyclic and square wave voltammetry. The above mentioned modified electrodes showed highly sensitive sensing and gave an excellent anodic response for both drugs. The peak current varied linearly over the concentration ranges: 3.98×10?5–1.53×10?3 mol L?1 (18.82–723.00 μg/mL) and 7.94×10?6–1.07×10?4 mol L?1 (3.65–48.25 μg/mL) with determination coefficients of 0.9999 and 0.9998 for linagliptin and empagliflozin, respectively. The recoveries and relative standard deviations were found in the following ranges: 98.80 %–102.00 % and 0.23 %–1.90 % for linagliptin and 98.30 %–101.80 % and 0.11 %–1.86 % for empagliflozin. The detection and quantification limits were 1.13×10?5 and 3.76×10?5 mol L?1 (5.34and17.77 μg/mL) for linagliptin, 1.71×10?6and 5.68×10?6 mol L?1 (0.77 and 2.56 μg/mL) for empagliflozin. The proposed sensors have been successfully applied for the determination of the drugs in bulk, pharmaceutical formulations and biological fluids.  相似文献   

15.
A sensitive and selective electrochemical sensor based on molecularly imprinted polymers (MIPs) was developed for caffeine (CAF) recognition and detection. The sensor was constructed through the following steps: multiwalled carbon nanotubes and gold nanoparticles were first modified onto the glassy carbon electrode surface by potentiostatic deposition method successively. Subsequently, o-aminothiophenol (ATP) was assembled on the surface of the above electrode through Au–S bond before electropolymerization. During the assembled and electropolymerization processes, CAF was embedded into the poly(o-aminothiophenol) film through hydrogen bonding interaction between CAF and ATP, forming an MIP electrochemical sensor. The morphologies and properties of the sensor were characterized by scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry. The recognition and determination of the sensor were observed by measuring the changes of amperometric response of the oxidation-reduction probe, [Fe(CN)6]3?/[Fe(CN)6]4?, on modified electrode. The results demonstrated that the prepared sensor had excellent selectivity and high sensitivity for CAF, and the linear range was 5.0?×?10?10?~?1.6?×?10?7?mol?L?1 with a detection limit of 9.0?×?10?11?mol?L?1 (S/N?=?3). The sensor was also successfully employed to detect CAF in tea samples.  相似文献   

16.
《Analytical letters》2012,45(18):2848-2858
A new membrane selective electrode based on the potentiometric method was developed for the determination of phenazopyridine. The membrane signal is based on the interaction of N,N′-(pyromellitoyl)-bis-L-tyrosine dimethyl ester with phenazopyridine. The sensor displays a linear response with a slope of 61.1 mV decade?1 for phenazopyridine concentrations in the range of 1.0 × 10?2–1.0 × 10?5 mol L?1 and with detection limit of 8.0 × 10?6 mol L?1 of phenazopyridine. The electrode enjoys a fast response time. Application of this potentiometric sensor for phenazopyridine determination in pharmaceuticals, urine, and blood serum samples is reported without any special pretreatment required.  相似文献   

17.
It is difficult to monitor dopamine (DA) accurately with a bare glassy carbon electrode because of the interference of ascorbic acid (AA). In this paper, a method for the determination of DA in an AA solution using differential pulse voltammetry was established. Because AA loses its electrochemical activity after being oxidized, hydrogen peroxide was used to oxidize AA, and the interference of AA was completely eliminated. As a result, trace DA could be directly determined in the AA solution with a bare glassy carbon electrode. When trace DA was determined in a 1.0 mmol L?1 AA solution, there was a wide linear range from 3.0×10?8 mol L?1 to 1.0×10?5 mol L?1. The application of this method was demonstrated by the selective measurement of DA in an injection without pretreatment.  相似文献   

18.
An electroanalytical method for the simultaneous determination of paracetamol (PAR), caffeine (CAF), and orphenadrine (ORPH) using the square‐wave voltammetry (SWV) and a cathodically pretreated boron‐doped diamond electrode was developed. The method exhibits linear responses to PAR, CAF, and ORPH in the concentration ranges 5.4×10?7–6.1×10?5 M, 7.8×10?7–3.5×10?5 M, and 7.8×10?7–3.5×10?5 M, respectively, with detection limits of 2.3×10?7 M, 9.6×10?8 M, and 8.4×10?8 M, respectively. The proposed method was successfully applied in the simultaneous determination of these analytes in pharmaceutical formulations.  相似文献   

19.
This paper reports the use of an adsorptive voltammetric technique for Pb(II) determination using cupferron as a selective complexing agent. After accumulation of the complex onto a hanging mercury drop electrode, the electrode potential was scanned with differential pulse modulation and the reduction current of lead was observed at about??0.5?V. Under optimum conditions (5?×?10?4?mol?L?1 cupferron concentration, 0.1?mol?L?1 acetate buffer (pH 5.5), adsorption at??50?mV for 30?s) the detection limit was 5.1?×?10?10?mol?L?1. The relative standard deviation of five measurements for low lead concentration was 3.1%. The accuracy of the method was tested by analysing certified reference material (SPS-WW1 Waste Water). Finally, the method was successfully applied to the determination of Pb(II) in river water samples without any pretreatments.  相似文献   

20.
《Electroanalysis》2006,18(5):517-520
The semi‐derivative technique was adopted to improve the resolution and surfactant was added to sample solution to enhance the sensitivity, α‐ and β‐naphthol isomers could be determined directly and simultaneously at glassy carbon electrode modified with carbon nanotubes network joined by Pt nanoparticles. In 0.1 mol L?1 HAc‐NaAc buffer solution (pH 5.8), the linear calibration ranges were 1.0×10?6 to 8.0×10?4 mol L?1 for both α‐ and β‐naphthols, with detection limits of 5.0×10?7 for α‐ and 6.0×10?7 mol L?1 for β‐naphthol. The amount of naphthol isomers in artificial wastewater has been tested with above method, and the recovery was from 98% to 103%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号