首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polar vinyl polymers, a class of polymers with polar groups as side chains, have significant advantages over conventional nonpolar polyolefin materials in terms of viscosity, toughness, interfacial properties (dyeability and printability), and compatibility with solvents or other polymers. Among them, aromatic polar vinyl polymers are of interest because of their good heat resistance properties. In addition, stereoselective polymerization of aromatic polar vinyl monomers has been rapidly developed because the steric structure of the polymer has a significant impact on its physical properties. In this paper, we review the research progress of stereoselective polymerization catalysts for aromatic polar vinyl monomers in recent years, discuss in detail the influence of ligand structure, electronic effect of substituents, spatial site resistance effect, central rare earth metal species and polymerization solvents on the activity and stereoselectivity of polymerization reactions, and explore the possible mechanism of polymerization reaction.  相似文献   

2.
Ziegler–Natta catalysts have played a major role in industry for the polymerization of dienes and vinyl monomers. However, due to the deactivation of the catalyst, this system fails to polymerize polar vinyl monomers such as vinyl acetate, methyl methacrylate, and methyl acrylate. Herein, a catalytic system composed of NdCl3⋅3TEP/TIBA is reported, which promotes a quasi‐living polymerization of dienes and is also active for the homopolymerization of polar vinyl monomers. Additionally, this catalytic system generates polymyrcene‐b‐polyisoprene and poly(myrcene)‐b‐poly(methyl methacrylate) diblock copolymers by sequential monomer addition. To encourage the replacement of petroleum‐based polymers by environmentally benign biobased polymers, polymerization of β‐myrcene is demonstrated with a catalytic activity of ≈106 kg polymer mol Nd−1 h−1.  相似文献   

3.
The replacement of precious metals in catalysis by earth‐abundant metals is currently one of the urgent challenges for chemists. Whereas palladium‐catalyzed copolymerization of ethylene and polar monomers is a valuable method for the straightforward synthesis of functionalized polyolefins, the corresponding nickel‐based catalysts have suffered from poor thermal tolerance and low molecular weight of the polymers formed. Herein, we report a series of neutral nickel complexes bearing imidazo[1,5‐a]quinolin‐9‐olate‐1‐ylidene (IzQO) ligands. The Ni/IzQO system can catalyze ethylene polymerization at 50–100 °C with reasonable activity in the absence of any cocatalyst, whereas most known nickel‐based catalysts are deactivated at this temperature range. The Ni/IzQO catalyst was successfully applied to the copolymerization of ethylene with allyl monomers to obtain the corresponding copolymers with the highest molecular weight reported for a Ni‐catalyzed system.  相似文献   

4.
The introduction of even a small amount of polar functional groups into polyolefins could excise great control over important material properties. As the most direct and economic strategy, the transition‐metal‐catalyzed copolymerization of olefins with polar, functionalized monomers represents one of the biggest challenges in this field. The presence of polar monomers usually dramatically reduces the catalytic activity and copolymer molecular weight (to the level of thousands or even hundreds Da), rendering the copolymerization process and the copolymer materials far from ideal for industrial applications. In this contribution, we demonstrate that these obstacles can be addressed through rational catalyst design. Copolymers with highly linear microstructures, high melting temperatures, and very high molecular weights (close to or above 1 000 000 Da) were generated. The direct synthesis of polar functionalized high‐molecular‐weight polyethylene was thus achieved.  相似文献   

5.
The development of novel Brønsted acids featuring the hexacoordinate phosphorus(V) anion [TRISPHAT]? {[ 1 ]?=[P(1,2‐O2C6Cl4)3]?} are reported. The title compound, H(OEt2)2[ 1 ], was synthesized from 1,2‐(HO)2C6Cl4 (3 equiv) and PCl5 in the presence of diethyl ether. This compound was fully characterized by 1H, 31P and 13C NMR spectroscopy, X‐ray crystallography and elemental microanalysis. Dissolution of H(OEt2)2[ 1 ] in acetonitrile results in the slow precipitation of crystalline H(OEt2)(NCMe)[ 1 ], which was characterized by X‐ray diffraction; however, in CD2Cl2 solution the [TRISPHAT]? anion protonated and ring‐opened. The weighable, solid H(OEt2)2 [ 1 ] was found to be a competent initiator for the polymerization of n‐butyl vinyl ether, α‐methylstyrene, styrene and isoprene at a variety of temperatures and monomer‐to‐initiator ratios. At low temperatures, polymers with Mn>105 were obtained for n‐butyl vinyl ether and α‐methylstyrene whereas slightly lower molecular weights were obtained with styrene and isoprene (104<Mn<105). The poly(α‐methylstyrene) synthesized at ?78 °C is syndiotactic‐rich (ca. 87 % rr) whereas the polystyrene obtained at ?50 °C is atactic. The polyisoprene obtained possessed all possible modes of enchainment as well as branched and/or cyclic structures that are often observed in polyisoprene.  相似文献   

6.
Type II photoinitiated self‐condensing vinyl polymerization for the preparation of hyperbranched polymers is explored using 2‐hydroxyethyl methacrylate (HEMA) or 2‐(dimethylamino)ethyl methacrylate (DMAEMA), and methyl methacrylate as hydrogen donating inimers and comonomer, respectively, in the presence of benzophenone and camphorquinone under UV and visible light. Upon irradiation at the corresponding wavelength, the excited photoinitiator abstracts hydrogen from HEMA or DMAEMA leading to the formation of initiating radicals. Depending on the concentration of inimers, type of the photoinitiator, and irradiation time, hyperbranched polymers with different branching densities and cross‐linked polymers are formed.

  相似文献   


7.
8.
Cationic ring‐opening polymerization of trimethylene carbonate using o‐benzenedisulfonimide as a reusable catalyst under mild conditions was described. The polymerization proceeded homogeneously without decarboxylation and poly(trimethylene carbonates) (PTMCs) were synthesized with well‐controlled molecular weights and narrow polydispersities (Mw/Mn = 1.12–1.18). The spectra of 1H‐NMR, SEC, and MALDI–ToF MS clearly demonstrated the incorporation of the initiator residue into the polymer chains and the controlled/living nature of the polymerizations. Furthermore, the catalyst can be easily recovered, and its efficiency was fully retained. In addition, 1,3‐propanediol, 1,1,1‐trimethylolpropane, and pentaerythritol were successfully used as initiators to produce telechelic and star‐shaped polycarbonates which were determined by intrinsic viscosity experiments. The number of arms estimated by the shrinking factors ( ) were 2.0, 2.6, and 3.5, respectively, indicating the successful syntheses of the two‐, three‐, and four‐armed PTMCs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 729–736  相似文献   

9.
An efficient method for the benzenium‐ion‐mediated cleavage of inert Si−C(sp3) bonds is reported. Various tetraalkylsilanes can thus be converted into the corresponding counteranion‐stabilized silylium ions. The reaction is chemoselective in the case of hexamethyldisilane. Computations reveal a mechanism with backside attack of the proton at one of the alkyl groups. Several activated Si−C(spn) bonds (n=3–1) react equally well, and the procedure can be extended to the generation of stannylium ions.  相似文献   

10.
The polymerization of a new polar diene‐based monomer 2‐(2‐methylidenebut‐3‐enyl)furan (MBEF) without masking is achieved by using the bis(phosphino)carbazoleide‐ligated yttrium (Y) alkyl complex upon the activation of [Ph3C][B(C6F5)4]. Under mild conditions, the polymerizations under the monomer‐to‐Y ratios ranging from 100:1 to 500:1 perform fluently in high yields. The afforded polydienes bearing pendant terminal furan groups have high cis‐1,4‐regularity up to 98.6% and molecular weights close to the theoretic values and narrow polymer dispersity index(PDI) (1.13–1.17) suggesting a livingness polymerization mode. In addition, this novel polydiene is an excellent building block for preparing functional rubber materials. For example, via Diels–Alder addition of furan groups under mild conditions, hydroxyl groups are successfully introduced on the side chains efficiently in a 75% conversion. Furthermore, the copolymerization of polar MBEF and nonpolar isoprene is also successfully realized by the bis(phosphino) carbazoleide‐ligated scandium analog to access furan‐modified cis‐1,4 (>97%) polyisoprene with different MBEF contents (5.3%, 8.7%).  相似文献   

11.
The direct enantioselective synthesis of chiral azaheteroaryl ethylamines from vinyl‐substituted N‐heterocycles and anilines is reported. A chiral phosphoric acid (CPA) catalyst promotes dearomatizing aza‐Michael addition to give a prochiral exocyclic aryl enamine, which undergoes asymmetric protonation upon rearomatization. The reaction accommodates a broad range of N‐heterocycles, nucleophiles, and substituents on the prochiral centre, generating the products in high enantioselectivity. DFT studies support a facile nucleophilic addition based on catalyst‐induced LUMO lowering, with site‐selective, rate‐limiting, intramolecular asymmetric proton transfer from the ion‐paired prochiral intermediate.  相似文献   

12.
A binary acid system has been developed that features an air‐stable organometallic precursor, titanocene dichloride, and simple organic cooperative Brønsted acids, which allowed for mild and highly efficient Mannich reactions of both aryl and alkyl ketones with excellent yields and satisfactory diastereoselectivity. Mechanistic studies, including 1H NMR titration, X‐ray structure analyses as well as isolation of catalytically active species, elucidated the dramatic synergistic effects of this new binary acid system.  相似文献   

13.
An anti‐selective Mannich reaction of aldehydes with N‐sulfonyl imines has been developed by using a 4‐hydroxypyrrolidine in combination with an external Brønsted acid. The catalyst design is based on three elements: the α‐substituent of the pyrrolidine, the 4‐hydroxy group, and the Brønsted acid, the combination of which is essential for high chemical and stereochemical efficiency. The reaction works with aromatic aldehyde‐derived imines, which have rarely been employed in previously reported enamine‐based anti‐Mannich reactions. Additionally, both N‐tosyl and N‐nosyl imines can be successfully used and the Mannich adducts can be easily reduced or oxidized, and after N‐deprotection the corresponding β‐amino acids and β‐amino alcohols can be obtained with good yields. The results also show that this ternary catalytic system may be practical in other enamine‐based reactions.  相似文献   

14.
A pair of mechanistically divergent multicatalytic reaction sequences has been developed consisting of nickel‐catalyzed isomerization of N‐allylcarbamates and subsequent phosphoric‐acid‐catalyzed enantioselective functionalization of the resulting intermediates. By appropriate selection of reaction partners, in situ generated imines and ene‐carbamates are mechanistically partitioned to yield opposing functionalized products. Formal α‐functionalization to give protected α‐arylamines is achieved upon enantioselective Friedel–Crafts reaction with arene nucleophiles, whereas formal β‐functionalization is achieved upon reaction with diarylimine electrophiles in an enantioselective Povarov‐[4+2] cycloaddition.  相似文献   

15.
The one‐step synthesis of well‐defined CO2‐based diblock copolymers was achieved by simultaneous ring‐opening copolymerization (ROCOP) of CO2/epoxides and RAFT polymerization of vinyl monomers using a trithiocarbonate compound bearing a carboxylic group (TTC‐COOH) as the bifunctional chain transfer agent (CTA). The double chain‐transfer effect allows for independent and precise control over the molecular weight of the two blocks and ensures narrow polydispersities of the resultant block copolymers (1.09–1.14). Notably, an unusual axial group exchange reaction between the aluminum porphyrin catalyst and TTC‐COOH impedes the formation of homopolycarbonates. By taking advantage of the RAFT technique, it is able to meet the stringent demand for functionality control to well expand the application scopes of CO2‐based polycarbonates.  相似文献   

16.
17.
A chiral disulfonimide (DSI)‐catalyzed asymmetric reduction of N‐alkyl imines with Hantzsch esters as a hydrogen source in the presence of Boc2O has been developed. The reaction delivers Boc‐protected N‐alkyl amines with excellent yields and enantioselectivity. The method tolerates a large variety of alkyl amines, thus illustrating potential for a general reductive cross‐coupling of ketones with diverse amines, and it was applied in the synthesis of the pharmaceuticals (S)‐Rivastigmine, NPS R‐568 Hydrochloride, and (R)‐Fendiline.  相似文献   

18.
A Brønsted acid enabled nickel‐catalyzed hydroalkenylation of aldehydes and styrene derivatives has been developed. The Brønsted acid acts as a proton shuttle to transfer a proton from the alkene to the aldehyde, thereby leading to an economical and byproduct‐free coupling. A series of synthetically useful allylic alcohols were obtained through one‐step reactions from readily available styrene derivatives and aliphatic aldehydes in up to 88 % yield and with high linear selectivity.  相似文献   

19.
A cooperative catalytic system established by the combination of an iron salt and a chiral Brønsted acid has proven to be effective in the asymmetric Friedel–Crafts alkylation of indoles with β‐aryl α′‐hydroxy enones. Good to excellent yields and enatioselectivities were observed for a variety of α′‐hydroxy enones and indoles, particularly for the β‐aryl α′‐hydroxy enones bearing an electron‐withdrawing group at the para position of the phenyl ring (up to 90 % yield and 91 % ee). The proton of the chiral Brønsted acid, the Lewis acid activation site, as well as the inherent basic site for the hydrogen‐bonding interaction of the Brønsted acid are responsible for the high catalytic activities and enantioselectivities of the title reaction. A possible reaction mechanism was proposed. The key catalytic species in the catalytic system, the phosphate salt of FeIII, which was thought to be responsible for the high activity and good enantioselectivity, was then confirmed by ESIMS studies.  相似文献   

20.
A Brønsted acid‐catalyzed asymmetric Nazarov cyclization of acyclic α‐alkoxy dienones has been developed. The reaction offers access to chiral cyclopentenones in a highly enantioselective manner. The reaction is complementary to our previously reported Brønsted acid‐catalyzed electrocyclization reactions, which provided differently substituted optically active cyclopentenones with a fused tetrahydropyrane ring in good yields and with excellent enantioselectivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号