首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two‐component substituted aryl groups are simultaneously grafted onto the surface of a glassy carbon electrode by electrochemical reduction of a binary mixture of two aryl diazonium salts in acetonitrile. The electrochemical deposition is achieved potentiostatically and two different mixtures with four different ratios of diazonium salts are used. The binary mixtures comprise: 1) 4‐nitrophenyl diazonium and 4‐bromophenyl diazonium cations and 2) 4‐bromophenyl diazonium and N,N‐diethylaniline diazonium cations. The chemical composition of the two component films is determined by cyclic voltammetry in an electrolyte inert for electroactive groups such as nitrophenyl and bromophenyl. X‐ray photoelectron spectroscopy is also used to evaluate the surface concentration of each grafted substituted phenyl group. The surface concentration of the substituted phenyl group for which the corresponding diazonium cation is the most easily reduced is higher than its concentration in the mixture of the deposition solution. The usefulness of binary films is also discussed.  相似文献   

2.
3.
4.
Deposition of ultra‐thin layers under computer control is a frequent requirement in studies of novel sensors, materials screening, heterogeneous catalysis, the probing of band offsets near semiconductor junctions and many other applications. Often large‐area samples are produced by magnetron sputtering from multiple targets or by atomic layer deposition (ALD). Samples can then be transferred to an analytical chamber for checking by X‐ray photoelectron spectroscopy (XPS) or other surface‐sensitive spectroscopies. The ‘wafer‐scale’ nature of these tools is often greater than is required in combinatorial studies, where a few square centimetres or even millimetres of sample is sufficient for each composition to be tested. The large size leads to increased capital cost, problems of registration as samples are transferred between deposition and analysis, and often makes the use of precious metals as sputter targets prohibitively expensive. Instead we have modified a commercial sample block designed to perform angle‐resolved XPS in a commercial XPS instrument. This now allows ion‐beam sputter deposition from up to six different targets under complete computer control. Ion beam deposition is an attractive technology for depositing ultra‐thin layers of great purity under ultra‐high vacuum conditions, but is generally a very expensive technology. Our new sample block allows ion beam sputtering using the ion gun normally used for sputter depth‐profiling of samples, greatly reducing the cost and allowing deposition to be done (and checked by XPS) in situ in a single instrument. Precious metals are deposited cheaply and efficiently by ion‐beam sputtering from thin metal foils. Samples can then be removed, studied and exposed to reactants or surface treatments before being returned to the XPS to examine and quantify the effects. Copyright © 2016 The Authors Surface and Interface Analysis Published by John Wiley & Sons Ltd.  相似文献   

5.
A comparison of the reductive adsorption behavior of 4‐sulfophenyl diazonium salt and subsequent electrochemical reactivity on gold relative to carbon was studied with some significant differences observed. The ability of the 4‐sulfophenyl layer adsorbed onto gold to block access of the redox probe ferricyanide to the underlying electrodes, as determined via cyclic voltammetry was inferior to the same layers formed on glassy carbon electrodes thus indicating a more open, porous layer formed on gold. More significantly, the 4‐sulfophenyl layers are shown to be far less electrochemically stable on gold than on glassy carbon. Electrochemical and X‐ray photoelectron spectroscopy (XPS) evidence suggests the instability is due to cleavage of the bond between sulfonate functional group and phenyl ring. These results provide further evidence that although aryl diazonium salt layers are relatively stable on gold surfaces compared with alkanethiol based self‐assembled monolayer (SAMs), the stability is not as high as is observed on carbon.  相似文献   

6.
用扫描电镜(SEM)、原子力显微镜(AFM)等分析技术研究了一种Al/Al2O3自生颗粒复合材料的微观形貌,结果表明,700~750℃气-液反应生成的氧化铝自生颗粒的典型尺寸为亚微米级,颗粒与基体之间具有热力学稳定性。  相似文献   

7.
Water dissociation is crucial in many catalytic reactions on oxide‐supported transition‐metal catalysts. Supported by experimental and density‐functional theory results, the effect of the support on O? H bond cleavage activity is elucidated for nickel/ceria systems. Ambient‐pressure O 1s photoemission spectra at low Ni loadings on CeO2(111) reveal a substantially larger amount of OH groups as compared to the bare support. Computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO2(111) compared with pyramidal Ni4 particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of this support effect is the ability of ceria to stabilize oxidized Ni2+ species by accommodating electrons in localized f‐states. The fast dissociation of water on Ni/CeO2 has a dramatic effect on the activity and stability of this system as a catalyst for the water‐gas shift and ethanol steam reforming reactions.  相似文献   

8.
The surface oxidation of FeCr alloys with 18, 28, and 43 mass‐% Cr was investigated in situ using grazing‐incidence X‐ray absorption spectroscopy (GIXAS) at the chromium and iron K‐edges. Oxidation in air was monitored in situ in the temperature range from 290 K to 680 K. The standard GIXAS data analysis is extended for the treatment of a single layer model in order to estimate the chromium concentrations of the oxide layer and of the near‐interface substrate as well as the oxide layer thickness. XANES analysis shows transitions from b.c.c. Fe to corundum type Fe2O3 and from b.c.c. Cr to corundum type Cr2O3. The initial oxide layers are 1.1‐1.4 nm thick and contain 60‐90 mass‐% chromium, while the near‐interface substrate is depleted in Cr. During heating, iron oxide growth dominates up to 560‐600 K. Then the chromium oxide layer loses its passivation effect and Cr oxidation sets in.  相似文献   

9.
In this study, 4‐thiophenol modified glassy carbon electrode was prepared by the reduction of 4‐diazothiophenol tetrafluoroborate salt. Silver nanoparticles were attached to the thiophenol modified surface to prepare a thiophenol‐silver nanoparticle composite film. 4‐Aminothiopenol molecules were deposited by self‐assembling technique to form multi‐layered nanofilms of TP/SNP/PhNH2 on glassy carbon substrate. These surfaces were characterized by cyclic voltammetry, electrochemical impedance spectroscopy, X‐ray photoelectron spectroscopy, reflectance‐absorption infrared spectroscopy, and ellipsometry at each multilayer film growth process. Atomic force microscopic images of GC/TP/SNP/PhNH2 surfaces were also acquired. The characterization methods show that the amine group containing surface permits the subsequent modification by a variety of coupling reactions for the immobilization of more complex systems. An application of the electrode modification for the determination of uric acid with a significantly lower detection limit is described. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Ultrathin films of the ionic liquid (IL) 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMIM][Tf2N], are prepared on a glass substrate by means of an in situ thermal‐evaporation/condensation process under ultrahigh‐vacuum conditions. By using X‐ray photoelectron spectroscopy (XPS), it is demonstrated that the first layer of the IL film grows two dimensionally, followed by the three‐dimensional growth of successive layers. The first molecular layer consists of a bilayer, with the [EMIM]+ cations in contact to the surface and the [Tf2N]? anions at the vacuum side. The ultrathin IL films are found to be stable under ambient conditions.  相似文献   

11.
Non‐thermal non‐equilibrium oxidative air 40‐kHz frequency, 13.56‐MHz radiofrequency and 2.46‐GHz microwave discharge plasma treatment were used for modifying low‐density polyethylene foils. The untreated and treated samples were chemically characterised by X‐ray photoelectron spectroscopy. In order to estimate the extent of the plasma sources at distinct treatment times, surface charge and energy were determined by zeta potential (ζ) and surface tension measurements. In addition, the isoelectric points (IEPs) of the studied samples were ascertained, and surface property variations were appraised by ageing time. The overall outcome indicated that ζ‐potential and surface energy progressively changed after each treatment, as well as the influences of ageing on surface features, the IEP shifting to lower pH values and how all of these changes are associated with the new surface chemistry. This contribution seeks to shed light on topics related to polymer science and plasma‐based strategies for surface modification. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
《Electroanalysis》2006,18(12):1141-1151
This paper reports a study of the factors affecting the analytical performance of gold and glassy carbon electrodes modified with the tripeptide Gly‐Gly‐His for the detection of copper ions. Gly‐Gly‐His is attached to a glassy carbon (GC) surface modified with 4‐carboxyphenyl moieties or a gold surface modified with 3‐mercaptopropionic acid by the reaction of the N‐terminal amine group of the peptide with the carboxylic acid groups of the monolayer via carbodiimide activation. X‐ray photoelectron spectroscopy was used to characterize the steps in the biosensor fabrication. It was found that the analytical performance of a sensor prepared with Gly‐Gly‐His on a GC electrode was similar to that on a gold electrode under the same conditions. The performance was greatly enhanced at higher temperature, no added salt during copper accumulation and longer accumulation time within a pH range of 7–9. Interference studies and investigations of stability of the Gly‐Gly‐His sensor are reported. Analysis of natural water samples show that the sensors measure only copper ions that can complex at the sensor surface. Strongly complexed copper in natural water is not measured. Despite greater stability of diazonium salt derived monolayers on carbon surfaces compared with alkanethiols self‐assembled monolayers on gold, the stability of the sensors was essentially the same regardless of the modification procedure.  相似文献   

13.
In this contribution, the synthesis and full structural and spectroscopic characterization of five bis‐1,2,4‐triazoles in combination with different energetic moieties like amino, nitro, nitrimino, azido, and dinitromethylene groups is presented. The main goal is a comparative study on the influence of those energetic moieties on the structural and energetic properties. A complete characterization including IR, Raman, and multinuclear NMR spectroscopy of all compounds is presented. Additionally, X‐ray crystallographic measurements were performed and deliver insight into structural characteristics as well as inter‐ and intramolecular interactions. The standard enthalpies of formation were calculated for all compounds at the CBS‐4M level of theory, the detonation parameters were calculated by using the EXPLO5.05 program. Additionally, the impact as well as the friction sensitivities and the sensitivity against electrostatic discharge were determined. The potential application of the synthesized compounds as energetic material will be studied and evaluated by using the experimentally obtained values for the thermal decomposition, the sensitivity data, and the calculated performance characteristics.  相似文献   

14.
This paper presents firm evidence for the chemical alteration of chrome yellow pigments in Van Gogh’s Sunflowers (Van Gogh Museum, Amsterdam). Noninvasive in situ spectroscopic analysis at several spots on the painting, combined with synchrotron‐radiation‐based X‐ray investigations of two microsamples, revealed the presence of different types of chrome yellow used by Van Gogh, including the lightfast PbCrO4 and the sulfur‐rich PbCr1?xSxO4 (x≈0.5) variety that is known for its high propensity to undergo photoinduced reduction. The products of this degradation process, i.e., CrIII compounds, were found at the interface between the paint and the varnish. Selected locations of the painting with the highest risk of color modification by chemical deterioration of chrome yellow are identified, thus calling for careful monitoring in the future.  相似文献   

15.
The urethane reaction of phenyl isocyanate and 1,2-propylene glycol was investigated with ferric acetylacetonate (Fe(acac)3) as catalyst. The effect of the catalytic properties of Fe(acac)3 on the formation of the urethane bond was evaluated with in situ FT-IR. The influence of the Fe(acac)3 concentration as well as the reaction temperature is discussed. It was observed that there was a turning point in the reaction rate when the temperature decreases, which remained unchanged with variation in Fe(acac)3 concentration. Arrhenius and Eyring parameters of the primary hydroxyl group were determined for the catalyzed reaction. The low-temperature and high-temperature values are surprisingly different. A reasonable reaction mechanism is proposed and the possible active species are discussed, followed by a kinetics and thermodynamics discussion.  相似文献   

16.
In this work, the interrelation between the anti‐reflective property and the component, especially the sp2 content, was studied. The results showed that the refraction index n increased from 2.2 to 3.3 with the direct current negative bias increasing. The reflection result R successful fall by 11.9% because of the existence of hydrogenated amorphous carbon anti‐reflective coatings. Both the refraction index and reflectivity decreasing correspond to a more graphitic microstructure character. Moreover, the optical property evolution of the films was explained by the chemical vapor deposition mechanism based on the ion sub‐plantation model and two‐phase model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)] · 7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)] · 4H2O (NDUS1), and one uranyl selenate‐selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L ‐cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4) Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two‐dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two‐dimensional uranyl selenate‐selenite sheets with a U/Se ratio of 1/2. In‐situ reaction of the L ‐cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L ‐cystine, balancing the charge of the sheets.  相似文献   

18.
Cytochrome P450 enzymes are an important family of biocatalysts that oxidize chemically inert C?H bonds. There are many unresolved questions regarding the catalytic reaction intermediates, in particular P450 Compound I (Cpd‐I) and II (Cpd‐II). By using simple molecular models, we simulate various X‐ray spectroscopy signals, including X‐ray absorption near‐edge structure (XANES), resonant inelastic X‐ray scattering (RIXS), and stimulated X‐ray Raman spectroscopy (SXRS) of the low‐ and high‐spin states of Cpd‐I and II. Characteristic peak patterns are presented and connected to the corresponding electronic structures. These X‐ray spectroscopy techniques are complementary to more conventional infrared and optical spectroscopy and they help to elucidate the evolving electronic structures of transient species along the reaction path.  相似文献   

19.
Teresa Łuczak 《Electroanalysis》2009,21(23):2557-2562
Thiodipropionoc acid (TDPA), cysteamine (CA) and gold nanoparticles (Au‐NPs) modified gold pure electrodes have been applied in voltammetric sensors for simultaneous detection of epinephrine (EP), ascorbic (AA) and uric (UA) acids. Modified electrodes with self assembled layers (SAMs) show high selectivity, sensitivity, reproducibility and stability. A linear relationship between the epinephrine concentration and the current response is obtained in the range of 0.1 μM to 0.65 μM with the detection limit ≤0.065 μM for the electrodes modified at 2D surface and in the range of 0.1 μM to 0.75 μM with the detection limit ≤0.082 μM for the electrodes modified at the 3D surface.  相似文献   

20.
We have investigated thin films of a perylene diimide derivative with a cyano‐functionalized core (PDI‐8CN2) deposited on Au(111) single crystals from the monolayer to the multilayer regime. We found that PDI‐8CN2 is chemisorbed on gold. The molecules experience a thickness‐dependent reorientation, and a 2D growth mode with molecular stepped terraces is achieved adopting low deposition rates. The obtained results are discussed in terms of their impact on field effect devices, also clarifying why the use of substrate/contact treatments, decoupling PDI‐8CN2 molecules from the substrate/contacts, is beneficial for such devices. Our results also suggest that perylene diimide derivatives with CN bay‐functionalization are very promising candidates for single‐molecule electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号