首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hydration state of poly(ethylene oxide)s (PEOs) in aqueous solutions was investigated using dielectric relaxation measurements at 25 degrees C over a frequency range up to 20 GHz, which is the relaxation frequency of water molecules in a bulk state. The dielectric relaxation spectra obtained indicated decomposition into two major and one minor relaxation modes with relaxation times of 8.3, 22, and 250 ps, respectively. The two major modes were attributed to rotational relaxation of water molecules belonging to the bulk state and water molecules hydrogen bonded to ethylene oxide (EO) monomer units. The number of hydration water molecules per EO unit depended on the molar mass of PEO (M) and reached a constant value of 3.7 at M > 1500, which agrees with the value obtained by other experiments.  相似文献   

2.
The combination of IR, Raman and NMR spectroscopy was used in the study of the blends of semicrystalline and amorphous polymers with considerably different strength of intermolecular interactions: poly(ϵ-caprolactam)/polystyrene (PCL/PS), poly(ethylene oxide)/poly(methyl methacrylate) (PEO/PMMA) and poly(N-methyllaurolactam)/poly(4-vinylphenol) (PNMLL/PVPh). In the vibrational and NMR spectra of the blends composed of non-interacting polymers (PCL/PS) and weakly interacting polymers (PEO/PMMA), no band changes were observed which would indicate changes of the conformational structures. 1H NMR relaxation of the PCL and PS components in the blends is the same as in the respective homopolymers similarly treated. In the blends of weakly interacting polymers (PEO/PMMA), the crystallinity of PEO is influenced by the presence of PMMA and is negligible in the blends with less than 30 wt.-% of PEO. The rotating-frame spin-lattice relaxation time for protons TH1p of PMMA indicates close contact of the PMMA and PEO chains. In the blends PNMLL/PVPh with strong hydrogen-bonding interactions, both components are intimately mixed on a scale of 3–4 nm and significant shifts of some bands both in vibrational and in NMR spectra reveal changes of structure.  相似文献   

3.
Biodegradable, amphiphilic, four‐armed poly(?‐caprolactone)‐block‐poly(ethylene oxide) (PCL‐b‐PEO) copolymers were synthesized by ring‐opening polymerization of ethylene oxide in the presence of four‐armed poly(?‐caprolactone) (PCL) with terminal OH groups with diethylzinc (ZnEt2) as a catalyst. The chemical structure of PCL‐b‐PEO copolymer was confirmed by 1H NMR and 13C NMR. The hydroxyl end groups of the four‐armed PCL were successfully substituted by PEO blocks in the copolymer. The monomodal profile of molecular weight distribution by gel permeation chromatography provided further evidence for the four‐armed architecture of the copolymer. Physicochemical properties of the four‐armed block copolymers differed from their starting four‐armed PCL precursor. The melting points were between those of PCL precursor and linear poly(ethylene glycol). The length of the outer PEO blocks exhibited an obvious effect on the crystallizability of the block copolymer. The degree of swelling of the four‐armed block copolymer increased with PEO length and PEO content. The micelle formation of the four‐armed block copolymer was examined by a fluorescent probe technique, and the existence of the critical micelle concentration (cmc) confirmed the amphiphilic nature of the resulting copolymer. The cmc value increased with increasing PEO length. The absolute cmc values were higher than those for linear amphiphilic block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 950–959, 2004  相似文献   

4.
5.
对聚(ε-己内酯)(PCL)/聚氧化乙烯(PEO)共混物的相差显微镜、广角X-射线衍射(WAXD)、小角X-射线散射(SAXS)及示差扫描量热计(DSC)等的研究表明,只有当共混物中PCL(或PEO)的含量低于20%时,两组份是相容的.当PCL含量低于20%时,在共混物中形成了PEO片晶和PCL片晶相间堆砌的结晶形态,当PEO含量不超过20%时,PEO则完全以非晶形式混入PCL的非晶区,同时阻碍了PCL的结晶.可见在结晶过程中,相容的两组份对共混体系形态结构的影响却不尽相同.  相似文献   

6.
Small-angle neutron scattering has been used to investigate the associative structures formed by triblock copolymers of poly(ethylene oxide) (PEO)-polypropylene oxide (PPO)-poly(ethylene oxide) (PEO) (also known as Pluronics) and to monitor the structural changes occurring upon complexation with heptakis(2,6-di-O-methyl)-beta-cyclodextrin (hbeta-CD) over the temperature range from 5 to 70 degrees C. At low temperature, the Pluronics are dispersed as unimers. Close to ambient temperature, the hydrophobicity of PPO causes the aggregation of the polymers into spherical micelles with core sizes between 40 and 50 A and a high inclusion of solvent. The aggregation number increases with temperature as the hydrophobicity of the core is gradually enhanced. hbeta-CD spontaneously forms pseudopolyrotaxanes with the triblock copolymers either when in their unimer form or micellized. The complexation results in an increase in the effective critical micellar concentration. It is suggested that the cyclodextrins thread onto the polymer backbone to localize preferentially on the central PPO block, therefore improving its water solubility. At temperatures where the polymers exist in micellar form, complexation with hbeta-CD gives rise to a complete disruption of the aggregates. These processes are highly temperature-dependent. Above 50 degrees C, the break-up of the aggregates is inhibited, and large-scale aggregation is observed.  相似文献   

7.
Gold nanoparticles of improved stability against aggregation were prepared using poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) star-block copolymers. A five-arm star-shaped macroinitiator (PEO) was utilized for the automated parallel controlled ring-opening polymerization of epsilon-caprolactone to prepare a series of PEO-b-PCL star-block copolymers with a constant PEO core linked to PCL blocks of variable length. The PEO core was swelled with KAuCl4 in N,N-dimethylformamide (DMF), and gold nanoparticles were subsequently obtained by reduction with NaBH4. Since the process was always templated by the same PEO core for all investigated polymers, the average dimension of the formed gold nanoparticles was in the same range for all star-block copolymers. In sharp contrast, the size distribution and long-term stability against aggregation of the gold nanoparticles dispersed in DMF were strongly dependent on the PCL block length, confirming the role of PCL blocks as stabilizing blocks for these nanoparticles.  相似文献   

8.
A new polymer with pendant hydroxyl groups, namely, poly(N-phenyl-2-hydroxytrime-thylene amine) (PHA), was synthesized by a direct condensation polymerization of aniline and epichlorohydrin in an alkaline medium. The new polymer is amorphous with a glass transition temperature (Tg) of 70°C. Blends of PHA with poly(ϵ-caprolactone) (PCL), as well as with two water-soluble polyethers, poly(ethylene oxide) (PEO) and poly(vinyl methyl ether) (PVME), were prepared by casting from a common solvent. It was found that all the three blends were miscible and showed a single, composition dependent glass transition temperature (Tg). FTIR studies revealed that PHA can form hydrogen bonds with PCL, PEO, and PVME, which are driving forces for the miscibility of the blends. © 1997 John Wiley & Sons, Inc.  相似文献   

9.
Self-assembly of poly(ethylene oxide)-block-poly(epsilon-caprolactone) five-arm stars (PEO-b-PCL) was studied at the air/water (A/W) interface. The block copolymers consist of a hydrophilic PEO core with hydrophobic PCL chains at the star periphery. All the polymers have the same number of ethylene oxide repeat units (9 per arm), and the number of epsilon-caprolactone repeat units ranges from 0 to 18 per arm. The Langmuir monolayers were analyzed by surface pressure/mean molecular area isotherms, compression-expansion hysteresis experiments, and isobaric relaxation measurements, and the Langmuir-Blodgett (LB) films' morphologies were investigated by atomic force microscopy (AFM). PCL homopolymers crystallize directly at the A/W interface in a narrow surface pressure range (11-15 mN/m). In the same pressure region, the star-shaped block copolymers undergo a phase transition corresponding to the collapse and the crystallization of the PCL chains as shown by the presence of a pseudoplateau in the isotherms. The LB films were prepared by transferring the Langmuir monolayers onto mica substrates at various surface pressures. AFM imaging confirmed the formation of PCL crystals in the LB monolayers of the PCL homopolymers and of the copolymers, but also showed that the PCL segments can undergo additional crystallization after monolayer transfer during water evaporation. The PCL crystal morphologies were also strongly influenced by the surface pressure and by the PEO segments.  相似文献   

10.
The tracer diffusion coefficient of unentangled poly(ethylene oxide) (PEO, M=1000 gmol) in a matrix of poly(methyl methacrylate) (PMMA, M=10 000 gmol) has been measured over a temperature range from 125 to 220 degrees C with forced Rayleigh scattering. The dynamic viscosities of blends of two different high molecular weight PEO tracers (M=440 000 and 900 000 gmol) in the same PMMA matrix were also measured at temperatures ranging from 160 to 220 degrees C; failure of time-temperature superposition was observed for these systems. The monomeric friction factors for the PEO tracers were extracted from the diffusion coefficients and the rheological relaxation times using the Rouse model. The friction factors determined by diffusion and rheology were in good agreement, even though the molecular weights of the tracers differed by about three orders of magnitude. The PEO monomeric friction factors were compared with literature data for PEO segmental relaxation times measured directly with NMR. The monomeric friction factors of the PEO tracer in the PMMA matrix were found to be from two to six orders of magnitude greater than anticipated based on direct measurements of segmental dynamics. Additionally, the PEO tracer terminal dynamics are a much stronger function of temperature than the corresponding PEO segmental dynamics. These results indicate that the fastest PEO Rouse mode, inferred from diffusion and rheology, is completely separated from the bond reorientation of PEO detected by NMR. This result is unlike other blend systems in which global and local motions have been compared.  相似文献   

11.
Zheng  Sixun    Han  Chen  Chunxia  Nie  Kangming  Guo  Qipeng 《Colloid and polymer science》2003,281(11):1015-1024
Epoxy resin (ER)/poly(ethylene oxide) (PEO) and/or poly(e-caprolactone) (PCL) blends cured with 1,3,5-trihydroxybenzene (THB) were prepared via the in situ curing reaction of epoxy monomers in the presence of PEO and/or PCL, which started from the initially homogeneous mixtures of DGEBA, THB and PEO and/or PCL. The miscibility and the intermolecular specific interactions in the thermosetting polymer blends were investigated by means of differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The two systems displayed single and composition-dependant glass transition temperatures (T gs), indicating the full miscibility of the thermosetting blends. The experimental T gs of the blends can be well accounted for by Gordon-Taylor and Kwei equations, respectively. The T g-composition behaviors were compared with those of poly(hydroxyether of bisphnol A) (Phenoxy) blends with PEO and PCL. It is noted that the formation of crosslinked structure has quite different effects on miscibility and intermolecular hydrogen bonding interactions for the thermosetting polymer blends. In ER/PEO blends, the strength of the intermolecular hydrogen bonding interactions is weaker than that of the self-association in the control epoxy resin, which is in marked contrast to the case of Phenoxy/PEO blends. This suggests that the crosslinking reduces the intermolecular hydrogen bonding interactions, whereas the intermolecular hydrogen bonding interactions were not significantly reduced by the formation of the crosslinking structure in ER/PCL blends.  相似文献   

12.
Audio-frequency dielectric relaxation measurements and differential scanning calorimetry studies have been performed on poly(ethylene oxide) (PEO) complexed with calcium and barium thiocyanate. The measurements were performed over the temperature range 5.5-300 K. The relaxation spectrum for the complexed material consists of two peaks. The activation enthalpy for the peak corresponding to the γ relaxation of pure PEO depends upon the size of the dopant cation. The activation enthalpy for the second peak is independent of the nature of the dopant cation and is very similar to that observed for the αc relaxation observed in pure PEO. Furthermore, the room-temperature electrical conductivity of the complexed materials is much smaller than that for pure PEO and hence very much less than for PEO-complexed with alkali-metal salts. However, above Tg the conductivity rises rapidly and is larger for the barium-thiocyanate-complexed PEO than for the calcium-complexed material. Finally, the DSC studies show that one effect of the ions is to shift the glass transition to higher temperatures.  相似文献   

13.
A mixture of water (10 mM KCl), toluene and Triton X-100 (40:40:20 wt %) shows temperature-dependent phase inversion. The phase inversion has been studied by dielectric spectroscopy over a frequency range of 10 Hz to 1 GHz. At temperatures above about 37 degrees C, dielectric relaxation appeared around 10 MHz, which was due to interfacial polarization in a water-in-oil type emulsion. The dielectric relaxation drastically changed between 30 and 25 degrees C. With decreasing temperature, the intensity of dielectric relaxation increased steeply below 30 degrees C to attain a peak at 27 degrees C, where that change was associated with an increase in low-frequency conductivity by about three orders between 30 and 26 degrees C. The dielectric behavior has been interpreted in terms of interfacial polarization with a percolation model in which spherical water droplets, arranged in array in a continuous oil phase, are randomly connected with their nearest neighbors using water bonds.  相似文献   

14.
The dielectric properties of methylacrylate (MA)/tri-ethyleneglycol dimethacrylate (TrEGDMA) copolymers at different compositions, ranging from 0 to 100, were measured between −120 and 150 °C over the frequency range 0.1 Hz-1 MHz. In the given frequency range, three relaxation processes were detected by dielectric relaxation spectroscopy in homo poly-TrEGDMA and copolymers: the α process associated with the glass transition, and two secondary processes due to localized mobility. In PMA only one secondary process was observed besides the alpha relaxation process. The influence of copolymerization going from PMA, monofunctional softer component with a glass transition determined calorimetrically as 284 K, to poly-TrEGDMA, higher glass transition component, bifunctional, that also forms a dense network due to cross linking, reflects mainly in the alpha process that shifts to higher temperatures and becomes broader. The raise and broadening in the glass transition with TrEGDMA increase was also observed by dynamic mechanical thermal analysis and differential scanning calorimetry. The glass transition temperature of poly-TrEGDMA was not detected calorimetrically but a value of 429 K was estimated from the best fit of the Fox equation. In what concerns the secondary relaxation process detected in poly-TrEGDMA and copolymers at the lowest temperatures, it is related with local twisting motions of ethyleneglycol moieties, being designated as γ relaxation, while the process detected in the medium temperature range is associated with the rotation of the carboxylic groups as in poly(alkyl methacrylates), designated as β relaxation. This process is detected at much lower temperatures in homo PMA in the same temperature region than the above mentioned γ relaxation. The copolymerization influences mainly the α process while the γ process remains almost unaffected in copolymers relative to homo poly-TrEGDMA. The β process is largely determined by the presence o the tri-ethylene glycol dimethacrylate monomeric units even in copolymers with the lowest TrEGDMA content.  相似文献   

15.
The effects of temperature, polymer composition, and concentration on the micellization and gelation properties of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers in aqueous solutions were investigated by 1H NMR spectroscopy. It was found that the temperature-dependent behavior of PPO blocks, observed as changes in chemical shift, half-height width, and integral value, could be attributed as an intrinsic tool to characterize the transition states during unimer to micelle formation. The 1H NMR spectral analysis revealed that the hydrophobic part, PPO, of the Pluronic polymers plays a more significant role in the temperature-induced micellization, whereas the transitional behavior of Pluronic polymer, i.e., from micellization to liquid crystals formation, resulted in the drastic broadening of the spectral signals for the PEO, indicating that the PEO segments play a more significant role in the crystallization process. It was also observed that the temperature-dependent changes in the half-height width of the PEO -CH2- signal are sensitive to the liquid crystalline phase formation, which could be attributed to the close packing of spherical micelles at high polymer concentrations or temperatures.  相似文献   

16.
A comparative study on the mechanical and dielectric relaxation behavior of poly(5‐acryloxymethyl‐5‐methyl‐1,3‐dioxacyclohexane) (PAMMD), poly(5‐acryloxymethyl‐5‐ethyl‐1,3‐dioxacyclohexane) (PAMED), and poly(5‐methacryloxymethyl‐5‐ethyl‐1,3‐dioxacyclohexane) (PMAMED) is reported. The isochrones representing the mechanical and dielectric losses present prominent mechanical and dielectric β relaxations located at nearly the same temperature, approximately −80°C at 1 Hz, followed by ostensible glass–rubber or α relaxations centered in the neighborhood of 27, 30, and 125°C for PAMMD, PAMED, and PMAMED, respectively, at the same frequency. The values of the activation energy of the β dielectric relaxations of these polymers lie in the vicinity of 10 kcal mol−1, ∼ 2 kcal mol−1 lower than those corresponding to the mechanical relaxations. As usual, the temperature dependence of the mean‐relaxation times associated with both the dielectric and mechanical α relaxations is described by the Vogel–Fulcher–Tammann–Hesse (VFTH) equation. The dielectric relaxation spectra of PAMED and PAMMD present in the frequency domain, at temperatures slightly higher than Tg, the α and β relaxations at low and high frequencies, respectively. The high conductive contributions to the α relaxation of PMAMED preclude the possibility of isolating the dipolar component of this relaxation in this polymer. Attempts are made to estimate the temperature at which the α and β absorptions merge together to form the αβ relaxation in PAMMD and PAMED. Molecular Dynamics (MD) results, together with a comparative analysis of the spectra of several polymers, lead to the conclusion that flipping motions of the 1,3‐dioxacyclohexane ring may not be exclusively responsible for the β‐prominent relaxations that polymers containing dioxane and cyclohexane pendant groups in their structure present, as it is often assumed. The diffusion coefficient of ionic species, responsible for the high conductivity exhibited by these polymers in the α relaxation, is semiquantitatively calculated using a theory that assumes that this process arises from MWS effects, taking place in the bulk, combined with Nernst–Planckian electrodynamic effects, due to interfacial polarization in the films. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2486–2498, 1999  相似文献   

17.
The adsorption of amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) and poly(ethylene oxide)-b-poly(gamma-methyl-epsilon-caprolactone) copolymers in aqueous solution on silica and glass surfaces has been investigated by flow microcalorimetry, small-angle neutron scattering (SANS), surface forces, and complementary techniques. The studied copolymers consist of a poly(ethylene oxide) (PEO) block of M(n) = 5000 and a hydrophobic polyester block of poly(epsilon-caprolactone) (PCL) or poly(gamma-methyl-epsilon-caprolactone) (PMCL) of M(n) in the 950-2200 range. Compared to homoPEO, the adsorption of the copolymers is significantly increased by the connection of PEO to an aliphatic polyester block. According to calorimetric experiments, the copolymers interact with the surface mainly through the hydrophilic block. At low surface coverage, the PEO block interacts with the surface such that both PEO and PCL chains are exposed to the aqueous solution. At high surface coverage, a dense copolymer layer is observed with the PEO blocks oriented toward the solution. The structure of the copolymer layer has been analyzed by neutron scattering using the contrast matching technique and by tapping mode atomic force microscopy. The experimental observations agree with the coadsorption of micelles and free copolymer chains at the interface.  相似文献   

18.
The dielectric properties of poly(ethylene oxide) (PEO) are studied by dielectric relaxation spectroscopy measurements in wide ranges of frequency (5–2×109 Hz) and temperature (193 − 300 K). PEO/water systems are also studied in a wide range of water content h (0 − 0.85 grams of water per grams of dry PEO). The measurements allow to distinguish between the dipolar secondary mechanism γ and effects related to free charge motion. The data are analyzed within the formalisms of permittivity, ϵ*, and electric modulus, M*. The water has been found to plasticize the dipolar process and to affect strongly the conduction process. A critical water content hc, hc = 0.13, has been found for the mechanism of charge transport.  相似文献   

19.
Summary The interfacial tensions of a series of poly(ethylene oxides) (PEO) and poly(propylene oxides) (PPO) have been measured using a pendant drop technique. A drop of PEO was formed under the PPO, in a thermostatted cell usually at 73 °C, and it was photographed using parallel monochromatic light from a laser.The interfacial tensions were measured for a series of polymers of different molecular weights and were found to increase with increasing PPO molecular weight but to decrease slightly with increasing PEO molecular weight. The dependence on PPO molecular weight is explained as due to the adsorption of hydroxy end groups of the PPO at the PEO interface. When these end groups were "replaced by methoxy groups, the adsorption no longer took place and the interfacial tension increased.
Zusammenfassung Die Grenzflächenspannungen einer Reihe von Polyäthylenoxyden (PEO) und Polypropylenoxyden (PPO) wurden mittels der Methode des hängenden Tropfens gemessen. Ein Tropfen aus PEO wurde erzeugt unter PPO in einer temperierten Zelle bei gewöhnlich 73 ° C und wurde in parallelem monochromatischem Licht eines Lasers photographiert.Die Grenzflächenspannungen wurden für eine Reihe von Polymeren mit unterschiedlichem Molekulargewicht gemessen und nahmen zu mit steigendem PPO-Molekulargewicht, nahmen aber leicht ab mit zunehmendem PEO Molekulargewicht. Die Abhängigkeit vom PPO Molekulargewicht wird erklärt als Effekt der Adsorption von Hydroxyl-Endgruppen des PPO an der PEO Grenzfläche. Ersetzt man diese Endgruppen durch Methoxyl-Gruppen, beobachtet man keine Adsorption und die Grenzflächenspannung nimmt zu.


With 2 figures and 4 tables  相似文献   

20.
The α and β dielectric relaxations of poly(hexamethylenesebacate) (HMS), poly(2-methyl-2-ethyl propylenesebacate) (MEPS), poly(1,4- dimethylbutylene sebacate) (DBS) and block copolymers of HMS and MEPS have been studied. The α relaxation is amenable to a W.L.F. analysis and is associated with the glass transition of the polymers. This relaxation moves to higher temperatures with increasing HMS content in HMS/MEPS block copolymers. All the polymers studied exhibit psuedo-activation energies of ~32 kcal/mole at the glass transition. It is concluded that because the superposition principle is operative in the block copolymers, the glass transition must be very similar in both polymers and morphology and degree of crystallinity do not greatly affect this transition. The β relaxation which has been associated with segmental relaxation of polymethylene segments in polymers is also shown to be a function of HMS/MEPS block copolymer composition and chemical structure. This relaxation takes place at lower temperatures with increased HMS content in the blocks and also shifts to lower temperatures with side chain substitution adjacent to the carbonyl group in the polymer. It is concluded that the β relaxation takes place in the amorphous and crystalline regions of the polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号