首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Semi‐metallic TiO2 nanotube arrays (TiOxCy NTs) have been decorated uniformly with Ni(OH)2 nanoparticles without the aid of a polymer binder. The resulting hybrid nanotube arrays exhibit excellent catalytic activity towards non‐enzymatic glucose electro‐oxidation. The anodic current density of the glucose oxidation is significantly improved compared with traditional TiO2 nanotubes decorated with Ni(OH)2. Moreover, the Ni(OH)2/TiOxCy NT‐based electrode shows a fast response, high sensitivity, wide linear range, good selectivity and stability towards glucose electro‐oxidation, and thus provides a promising and cost‐effective sensing platform for non‐enzymatic glucose detection.  相似文献   

2.
A nickel hydroxide (Ni(OH)2)/3D‐graphene composite is used as monolithic free‐standing electrode for enzymeless electrochemical detection of glucose. Ni(OH)2 nanoflakes are synthesized by using a simple solution growth procedure on 3D‐graphene foam which was grown by chemical vapor deposition (CVD). The pore structure of 3D‐graphene allows easy access to glucose with high surface area, which leads to glucose detection with an ultrahigh sensitivity of 3.49 mA mM?1 cm?2 and a significant lower detection limit up to 24 nM. Cyclic voltammetry (CV) and potentionstatic mode is used for non‐enzymatic glucose sensing. The impedance and effective surface area have been studied well. The high sensitivity, low detection limit and simple configuration of Ni(OH)2/three dimensional (3D)‐graphene composite electrodes can evoke its industrial application in glucose sensing devices.  相似文献   

3.
《中国化学会会志》2017,64(7):795-803
β‐AgVO3 nanorods have been demonstrated to exhibit intrinsic peroxidase‐like activity. The oxidation of glucose can be catalyzed by glucose oxidase (GOx ) to generate H2O2 in the presence of O2 . The β‐AgVO3 nanorods can catalytically oxidize peroxidase substrates including o‐phenylenediamine (OPD ), 3,3′,5,5′‐tetramethylbenzidine (TMB ), and diammonium 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonate) (ABTS ) by H2O2 to produce typical color reactions: OPD from colorless to orange, TMB from colorless to blue, and ABTS from colorless to green. The catalyzed reaction by the β‐AgVO3 nanorods was found to follow the characteristic Michaelis–Menten kinetics. Compared with horseradish peroxidase and AgVO3 nanobelts, β‐AgVO3 nanorods showed a higher affinity for TMB with a lower Michaelis–Menten constant (K m) value (0.04118 mM ) at the optimal condition. Taking advantage of their high catalytic activity, the as‐synthesized β‐AgVO3 nanorods were utilized to develop a colorimetric sensor for the determination of glucose. The linear range for glucose was 1.25–60 μM with the lower detection limit of 0.5 μM . The simple and sensitive GOx ‐β–AgVO3 nanorods–TMB sensing system shows great promise for applications in the pharmaceutical, clinical, and biosensor detection of glucose.  相似文献   

4.
The highly porous Mn2O3‐Ag nanofibers were fabricated by a facile two‐step procedure (electrospinning and calcination). The structure and composition of the Mn2O3‐Ag nanofibers were characterized by SEM, TEM, XRD, EDX and SAED. The as‐prepared Mn2O3‐Ag nanofibers were then employed as the immobilization matrix for glucose oxidase (GOD) to construct an amperometric glucose biosensor. The biosensor shows fast response to glucose, high sensitivity (40.60 µA mM?1 cm?2), low detection limit (1.73 µM at S/N=3), low Km,app value and excellent selectivity. These results indicate that the novel Mn2O3‐Ag nanfibers‐GOD composite has great potential application in oxygen‐reduction based glucose biosensing.  相似文献   

5.
3D macroporous TiO2 inverse opals have been derived from a sol‐gel procedure using polystyrene colloidal crystals as templates. EDS and SEM showed a face‐centered cubic (FCC) structure TiO2 inverse opal was obtained. Glucose oxidase (GOx) was successfully immobilized on the surface of indium‐tin oxide (ITO) electrode modified by TiO2 inverse opal (TiO2(IO)). Electrochemical properties of GOx/TiO2(IO)/ITO electrode were characterized by using the three electrodes system. The result of cyclic voltammetry showed that a couple of stable and well‐defined redox peaks for the direct electron transfer of GOx in absence of glucose, and the redox peak height enhanced in presence of 0.1 μM glucose. Compare with the ordinary structured GOx/TiO2/ITO electrode, inverse opal structured GOx/TiO2(IO)/ITO electrode has a better respond to the glucose concentration change. Under optimized experimental conditions of solution pH 6.8 and detection potential at 0.30 V versus saturated calomel electrode (SCE), amperometric measurements were performed. The sensitivity and the detection limit of glucose detection was 151 μA cm?2 mM?1 and 0.02 μM at a signal‐to‐noise ratio of 3, respectively. The good response was due to the good biocompatibility of TiO2 and the large effective surface of the three‐dimensionally ordered macroporous structure.  相似文献   

6.
Non‐enzymatic glucose sensor is greatly expected to take over its enzymatic counterpart in the future. In this paper, we reported on a facile strategy to construct a non‐enzymatic glucose sensor by use of NiCo2O4 hollow nanocages (NiCo2O4 HNCs) as catalyst, which was derived from Co‐based zeolite imidazole frame (ZIF‐67). The NiCo2O4 HNCs modified glassy carbon electrode (NiCo2O4 HNCs/GCE), the key component of the glucose sensor, showed highly electrochemical catalytic activity towards the oxidation of glucose in alkaline media. As a result, the proposed non‐enzymatic glucose sensor afforded excellent analytical performances assessed with the aid of cyclic voltammetry and amperometry (i–t). A wide linear range spanning from 0.18 μΜ to 5.1 mM was achieved at the NiCo2O4 HNCs/GCE with a high sensitivity of 1306 μA mM?1 cm?2 and a fast response time of 1 s. The calculated limit of detection (LOD) of the sensor was as low as 27 nM (S/N=3). Furthermore, it was demonstrated that the non‐enzymatic glucose sensor showed considerable anti‐interference ability and excellent stability. The practical application of the sensor was also evaluated by determination of glucose levels in real serum samples.  相似文献   

7.
《中国化学快报》2019,30(9):1635-1638
Development of sensitive biosensors for biocatalytic transformations monitoring is in high demand but remains a great challenge. It is ascribed to the current strategies that focused on the single metabolite detection, which may bring about the relatively low sensitivity and false diagnosis result. Herein, we report the design and fabrication of novel carbon dots (CDs) with strong orange light emission, pH and H2O2 dual-responsive characteristics. The fluorescence quenching of CDs by H+ and H2O2 enables the highly sensitive detection of H+/H2O2-generating biocatalytic transformations. This is exemplified by the glucose oxidase-mediated catalytic oxidation reaction on glucose, in which H+ and H2O2 would be formed. As compared to the case in which glucose is present, significant fluorescence reduction is detected, and the fluorescence intensity is negatively proportional to glucose concentration. Thus, highly sensitive detection of glucose was readily achieved with a detection limit down to 10.18 nmol/L. The prepared CDs not only realize the highly sensitive detection of glucose, but also allows the probing other substances by changing the enzymes, thus providing a versatile platform, and demonstrating good potential to be used for biocatalytic transformations effective monitoring.  相似文献   

8.
《Electroanalysis》2018,30(9):2044-2052
Acid functionalized multi‐walled carbon nanotubes (f‐MWCNTs) were decorated with Au and Fe2O3 nanoparticles (FeONPs) and deposited on glassy carbon electrode (GCE). The resulting hybrid Au/Fe2O3/f‐MWCNTs/GCE electrode and the one further modified by glucose oxidase were compared for detection of glucose. FeONPs and Au were deposited on the f‐MWCNTs by sonication‐assisted precipitation and deposition‐precipitation methods, respectively. The morphology and structure of the samples were characterized by transmission electron microscopy, scanning electron microscopy, X‐ray diffraction and Raman spectroscopy. A uniform distribution of FeONPs with an average size of 5 nm increased the surface area of functionalized nanotubes from 39 to 50 m2/g. The electrocatalytic glucose detection on the modified electrodes was evaluated using cyclic voltammetry and chronoamperometry in 0.1 M phosphate buffer solution at pH 7.0. The non‐enzymatic and enzymatic electrodes show sensitivity of 512.4 and 921.4 mA/mM.cm2 and detection limit of 1.7 and 0.9 mM, respectively. The enzymatic and enzymeless electrodes retained more than 70 % and 80 % of their cathodic faradic current after 70 days, respectively. The sensing mechanism of the non‐enzymatic biosensor is described through the reaction of glucose with iron (III) ions, while in the case of enzymatic electrode, glucose is oxidized by glucose oxidase.  相似文献   

9.
We exploit a high‐performing resistive‐type trace oxygen sensor based on 2D high‐mobility semiconducting Bi2O2Se nanoplates. Scanning tunneling microscopy combined with first‐principle calculations confirms an amorphous Se atomic layer formed on the surface of 2D Bi2O2Se exposed to oxygen, which contributes to larger specific surface area and abundant active adsorption sites. Such 2D Bi2O2Se oxygen sensors have remarkable oxygen‐adsorption induced variations of carrier density/mobility, and exhibit an ultrahigh sensitivity featuring minimum detection limit of 0.25 ppm, long‐term stability, high durativity, and wide‐range response to concentration up to 400 ppm at room temperature. 2D Bi2O2Se arrayed sensors integrated in parallel form are found to possess an oxygen detection minimum of sub‐0.25 ppm ascribed to an enhanced signal‐to‐noise ratio. These advanced sensor characteristics involving ease integration show 2D Bi2O2Se is an ideal candidate for trace oxygen detection.  相似文献   

10.
In a tannic acid assisted synthesis of mesoporous TiO2, tannic acid was used as a cost effective and non‐toxic template for pore formation. Meanwhile, a gold nanoparticles (Au NPs) deposited TiO2 nanocomposite was coated on an indium tin oxide electrode for the fabrication of a photoelectrochemical (PEC) biosensing system. Upon the formation of anatase structure, the electrode was coated with MoS2 for effective visible light absorption. The mesoporous structure led to an enhanced surface area by improving Au NPs and glucose oxidase adsorption. Incorporation of Au NPs led to an enhanced photonic efficiency due to the generation of Schottky barriers. The obtained nanocomposite was used for the light‐driven, real‐time, and selective PEC glucose sensing. Under visible light irradiation, the enzyme immobilized electrodes yielded significant photocurrent improvement owing to the releasing electron donor H2O2. The obtained PEC biosensor demonstrated acceptable reproducibility and stability with a sensitivity of 4.42 μA mM?1 cm?2 and a low detection limit of 1.2 μM glucose. Also, the linear measurement range was found to be 0.004–1.75 mM glucose. The results indicated that the proposed production method of mesoporous TiO2 will pave the way for a green chemistry based porous material production, along with the extension of the implementation of semiconductors in PEC biosensing systems.  相似文献   

11.
《Electroanalysis》2005,17(3):210-222
Presented in this work is the first step towards an enzymeless/mediatorless glucose sensor. We first observed remarkable electrocatalytic oxidation of glucose using combinative ruthenium oxide (RuOx)‐Prussian blue (PB) analogues (designated as mvRuOx‐RuCN, mv: mixed valent) at ca. 1.1 V (vs. Ag/AgCl) in acidic media (pH 2 Na2SO4/H2SO4). Individual RuOx and PB analogs failed to give any such catalytic response. A high ruthenium oxidation state (i.e., oxy/hydroxy‐RuVII, E°≈1.4 V vs. RHE), normally occurring in strong alkaline conditions at RuOx‐based electrodes, was electrogenerated and stabilized (without any conventional disproportionation reaction) in the mvRuOx‐RuCN matrix for glucose catalysis. Detail X‐ray photoelectron spectroscopic studies can fully support the observation. The catalyst was chemically modified onto a disposable screen‐printed carbon electrode and employed for the amperometric detection of glucose via flow injection analysis (FIA). This system has a linear detection range of 0.3–20 mM with a detection limit and sensitivity of 40 μM (S/N=3) and 6.2 μA/(mM cm2), respectively, for glucose. Further steps towards the elimination of interference and the extendibility to neutral pHs were addressed.  相似文献   

12.
The fabrication of a highly sensitive amperometric glucose biosensor based on silver nanowires (AgNWs) is presented. The electrochemical behavior of glassy carbon electrode modified by Ag NWs exhibits remarkable catalytic performance towards hydrogen peroxide (H2O2) and glucose detection. The biosensor could detect glucose in the linear range from 0.005 mM to 10 mM, with a detection limit of 50 µM (S/N=3). The glucose biosensor shows high and reproducible sensitivity of 175.49 µA cm?2 mM and good stability. In addition, the biosensor exhibits a good anti‐interference ability and favorable stability over relatively long‐term storage (more than 21 days).  相似文献   

13.
A mixed‐valence cluster of cobalt(II) hexacyanoferrate and fullerene C60‐enzyme‐based electrochemical glucose sensor was developed. A water insoluble fullerene C60‐glucose oxidase (C60‐GOD) was prepared and applied as an immobilized enzyme on a glassy carbon electrode with cobalt(II) hexacyanoferrate for analysis of glucose. The glucose in 0.1 M KCl/phosphate buffer solution at pH = 6 was measured with an applied electrode potential at 0.0 mV (vs Ag/AgCl reference electrode). The C60‐GOD‐based electrochemical glucose sensor exhibited efficient electro‐catalytic activity toward the liberated hydrogen peroxide and allowed cathodic detection of glucose. The C60‐GOD electrochemical glucose sensor also showed quite good selectivity to glucose with no interference from easily oxidizable biospecies, e.g. uric acid, ascorbic acid, cysteine, tyrosine, acetaminophen and galactose. The current of H2O2 reduced by cobalt(II) hexacyanoferrate was found to be proportional to the concentration of glucose in aqueous solutions. The immobilized C60‐GOD enzyme‐based glucose sensor exhibited a good linear response up to 8 mM glucose with a sensitivity of 5.60 × 102 nA/mM and a quite short response time of 5 sec. The C60‐GOD‐based glucose sensor also showed a good sensitivity with a detection limit of 1.6 × 10‐6 M and a high reproducibility with a relative standard deviation (RSD) of 4.26%. Effects of pH and temperature on the responses of the immobilized C60‐GOD/cobalt(II) hexacyanoferrate‐based electrochemical glucose sensor were also studied and discussed.  相似文献   

14.
We report here a nonenzymatic sensor by using a nanoporous platinum electrode to detect glucose directly. The electrode was fabricated by electrochemical deposition and dissolution of PtZn alloy in zinc chloride‐1‐ethyl‐3‐methylimidazolium chloride (ZnCl2‐EMIC) ionic liquid. Both SEM and electrochemical studies showed the evidences for the nanoporous characteristics of the as‐prepared Pt electrodes. Amperometric measurements allow observation of the electrochemical oxidation of glucose at 0.4 V (vs. Ag/AgCl) in pH 7.4 phosphate buffer solution. The sensor also demonstrates significant reproducibility in glucose detection; the higher the roughness factor of the Pt electrode, the lower the detection limit of glucose. The interfering species such as ascorbic acid and p‐acetamidophenol can be avoided by using a Pt electrode with a high roughness factor of 151. Overall, the nanoporous Pt electrode is promising for enzymeless detection of glucose at physiological condition.  相似文献   

15.
The preparation of NiCo2S4 (NCS) nanosheets on photolithographically patterned platinum electrodes by electrodeposition was explored. The as‐prepared nanosheets were systematically characterized by field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, and X‐ray photoelectron spectroscopy techniques. The NCS‐modified Pt electrode was used as a non‐enzymatic glucose sensor. The sensor response exhibited two linear regions in glucose concentration, with a limit of detection of 1.2 μm . The sensors showed that the as‐prepared NCS nanosheets have excellent electrocatalytic activity towards glucose with long stability, good reproducibility, and excellent anti‐interference properties, and thus, this material holds promise for the development of a practical glucose sensor.  相似文献   

16.
α‐Synuclein (α‐SYN) is a very important neuronal protein that is associated with Parkinson’s disease. In this paper, we utilized Au‐doped TiO2 nanotube arrays to design a photoelectrochemical immunosensor for the detection of α‐SYN. The highly ordered TiO2 nanotubes were fabricated by using an electrochemical anodization technique on pure Ti foil. After that, a photoelectrochemical deposition method was exploited to modify the resulting nanotubes with Au nanoparticles, which have been demonstrated to facilitate the improvement of photocurrent responses. Moreover, the Au‐doped TiO2 nanotubes formed effective antibody immobilization arrays and immobilized primary antibodies (Ab1) with high stability and bioactivity to bind target α‐SYN. The enhanced sensitivity was obtained by using {Ab2‐Au‐GOx} bioconjugates, which featured secondary antibody (Ab2) and glucose oxidase (GOx) labels linked to Au nanoparticles for signal amplification. The GOx enzyme immobilized on the prepared immunosensor could catalyze glucose in the detection solution to produce H2O2, which acted as a sacrificial electron donor to scavenge the photogenerated holes in the valence band of TiO2 nanotubes upon irradiation of the other side of the Ti foil and led to a prompt photocurrent. The photocurrents were proportional to the α‐SYN concentrations, and the linear range of the developed immunosensor was from 50 pg mL?1 to 100 ng mL?1 with a detection limit of 34 pg mL?1. The proposed method showed high sensitivity, stability, reproducibility, and could become a promising technique for protein detection.  相似文献   

17.
A non‐enzyme photoelectrochemical (PEC) glucose sensor based on α‐Fe2O3 film is investigated. The α‐Fe2O3 film was fabricated via a simple spin coating method. The proposed glucose sensor exhibits good selectivity, a fast response time of <5 s, a linear range of 0.05 to 6.0 mM, sensitivity of 17.23 μA mM?1 cm?2 and a detection limit of 0.05 μM. Meanwhile, the excellent performances of the α‐Fe2O3 sensor were obtained in reproducibility and the long‐term stability under ambient condition. The linear amperometric response of the sensor covers the glucose levels in physiological and clinical for diabetic patients. Therefore, this non‐enzyme PEC sensor based on α‐Fe2O3 film has a great potential application in the development of glucose sensors.  相似文献   

18.
The sensitive and rapid detection of blood glucose is very important for monitoring and managing diabetes.Herein,a fluorescent/magnetic bimodal sensing strategy is proposed for glucose detection using a multifunction-responsive nanocomposite(MoS_2 QDs-MnO_2 NS).MoS_2 QDs act as fluorescent probes,and MnO_2 nanosheets are used as both quenchers and recognizers in this sensing platform.In the presence of glucose-mediated enzyme product(H_2 O_2),MnO_2 nanosheet is etched,thus releasing MoS_2 QDs and Mn~(2+)ions,which causes the significantly enhancement of fluorescent and magnetic signals.Furthermore,MoS_2 QDs-MnO_2 NS-based fluorescent test paper is constructed for H_2 O_2 sensing with the naked eyes.Under optimal conditions,the dual linear ranges of 20-300 μmol/L and 40-250 μmol/L toward glucose detection are obtained for the fluorescent and magnetic mode,respectively.Furthermore,this bimodal assay exhibits good reproducibility and acceptable accuracy in glucose detection of clinical samples,demonstrating great versatility and flexibility of multifunctional probes in glucose detection.  相似文献   

19.
Mei Hu  Hao-Ting Lu  Lian-Hui Wang 《Talanta》2010,82(3):997-536
A novel label-free detection system based on CdTe/CdS quantum dots (QDs) was designed for the direct measurement of glucose. Herein we demonstrated that the photoluminescence (PL) of CdTe/CdS QDs was sensitive to hydrogen peroxide (H2O2). With d-glucose as a substrate, H2O2 that intensively quenched the QDs PL can be produced via the catalysis of glucose oxidase (GOx). Experimental results showed that the decrease of the QDs PL was proportional to the concentration of glucose within the range of 1.8 μM to 1 mM with the detection limit of 1.8 μM under the optimized experimental conditions. In addition, the QD-based label-free glucose sensing platform was adapted to 96-well plates for fluorescent assay, enhancing the capabilities and conveniences of this detection platform. An excellent response to the concentrations of glucose was found within the range of 2-30 mM. Glucose in blood and urine samples was effectively detected via this strategy. The comparison with commercialized glucose meter indicated that this proposed glucose assay system is not only simple, sensitive, but also reliable and suitable for practical application. The high sensitivity, versatility, portability, high-throughput and low cost of this glucose sensor implied its potential in point-of-care clinical diagnose of diabetes and other fields.  相似文献   

20.
《Electroanalysis》2004,16(20):1711-1716
A glucose microbiosensor has been developed using electrochemical codeposition of glucose oxidase (GOx) along with MnO2 as mediator, onto a single carbon fiber microelectrode. A two‐step deposition of only MnO2 initially and then of MnO2 in the presence of GOx has been introduced to ensure appropriate activity of the mediator. Several parameters such as deposition potential and time, concentration levels etc. have been characterized and optimized. A thin Nafion film was applied as an immobilization/encapsulation and interference‐free protective layer. The proposed microbiosensor was employed as an amperometric glucose detector at pH 7.5 at an operating potential of +0.58 V (vs. Ag/AgCl). The microbiosensor is characterized by a well‐reproducible amperometric response, linear signal‐to‐glucose concentration range from 1.5 mmol L?1 to 15 mmol L?1, and a limit of detection (S/N=3) of 0.8 mmol L?1. The microbiosensor exhibits good stability over more than ten hours of continuous measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号