首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive and reliable method based on MEKC has been developed and validated for trace determination of neonicotinoid insecticides (thiamethoxam, acetamiprid, and imidacloprid) and the metabolite 6‐chloronicotinic acid in water and soil matrices. Optimum separation of the neonicotinoid insecticides was obtained on a 58 cm long capillary (75 μm id) using as the running electrolyte 40 mM SDS, 5 mM borate (pH 10.4), and 5% (v/v) methanol at a temperature of 25°C, a voltage of 25 kV and with hydrodynamic injection (10 s). The analysis time was less than 7 min. Prior to MEKC determination, the samples were purified and enriched by carrying out extraction‐preconcentration steps. For aqueous samples, off‐line SPE with a sorptive material such as Strata‐X (polymeric hydrophobic sorbent) and octadecylsilane (C18) was carried out to clean up and preconcentrate the insecticides. However, for soil samples, matrix solid‐phase dispersion (MSPD) was applied with C18 used as the dispersant. Good linearity, accuracy, and precision were obtained and the detection limits were in the range between 0.01 and 0.07 μg mL?1 for river water and 0.17 and 0.37 μg g?1 for soil samples. Recovery levels reached greater than 92% for all of the assayed neonicotinoids in river water samples with Strata‐X. In soil matrices, the best recoveries (63–99%) were obtained with MSPD.  相似文献   

2.
A solid‐phase extraction combined with a liquid chromatography‐tandem mass spectrometry analysis has been developed and validated for the simultaneous determination of 44 pharmaceuticals belonging to different therapeutic classes (i.e., antibiotics, anti‐inflammatories, cardiovascular agents, hormones, neuroleptics, and anxiolytics) in water samples. The sample preparation was optimized by studying target compounds retrieval after the following processes: i) water filtration, ii) solid phase extraction using Waters Oasis HLB cartridges at various pH, and iii) several evaporation techniques. The method was then validated by the analysis of spiked estuarine waters and wastewaters before and after treatment. Analytical performances were evaluated in terms of linearity, accuracy, precision, detection, and quantification limits. Recoveries of the pharmaceuticals were acceptable, instrumental detection limits varied between 0.001 and 25 pg injected and method quantification limits ranged from 0.01 to 30.3 ng/L. The precision of the method, calculated as relative standard deviation, ranged from 0.3 to 49.4%. This procedure has been successfully applied to the determination of the target analytes in estuarine waters and wastewaters. Eight of these 44 pharmaceuticals were detected in estuarine water, while 26 of them were detected in wastewater effluent. As expected, the highest values of occurrence and concentration were found in wastewater influent.  相似文献   

3.
Tetracyclines abuse has frequently occurred in aquaculture against bacteria, rickettsiae, spirochetes, and mycoplasmas. In this study, a high‐throughput sample preparation method was developed using 96‐well plate solid‐phase extraction (p‐SPE) and the extract was analyzed by ultra‐performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS). The experimental conditions were optimized such that the pH is 4, the eluting solvent is methanol (2 mL), and the sorbent is hydrophilic‐lipophilic balance (HLB) microsphere. The whole protocol was validated, and it showed that the tetracyclines were linear with correlation coefficients ≥ 0.9990, precision and accuracy (RSD%) in 3.9–6.1%, and mean recoveries of 88.6–103.6%. To exhibit the potential of 96‐well p‐SPE as a routine tool for inspection and quarantine, fresh aquatic samples were tested, and among which positive samples were observed. This method was demonstrated to be promising for the purification and enrichment of tetracyclines with reduced time and labor, and indeed practically and particularly suitable for widespread tetracyclines analysis.  相似文献   

4.
Pesticides, widely applied in agriculture, can produce a variety of transformation products and their continuous use causes deleterious effects to ecosystem. Efficient and sensitive analytical techniques for enrichment and analysis of pesticides samples are highly required. Compared with other extraction methods, solid‐phase micro extraction is a solvent free, cost effective, robust, versatile, and high throughput sample preparation technique, especially for the analysis of pesticides from complicated matrices. Coupling of solid‐phase micro extraction with gas chromatography and mass spectrometry and liquid chromatography–mass spectrometry has been extensively applied in pesticide analysis. On the other hand, in recent years, combination of fast separation using solid‐phase micro extraction and rapid detection using ambient mass spectrometry is providing highly efficient pesticide screening. This article summarizes the applications of solid‐phase micro extraction coupled to mass spectrometry for pesticides analysis.  相似文献   

5.
The potential of CZE with LIF detection in the separation and determination of low‐molecular mass aldehydes involving precolumn derivatization with fluorescein 5‐thiosemicarbazide was investigated. Different variables that affect derivatization (pH, fluorescein 5‐thiosemicarbazide concentration, time and temperature) and separation (pH and concentration of the BGE, kind and concentration of surfactants at levels higher and lower than CMC, and applied voltage) were studied. The separation was conducted within 16 min by using borate buffer (60 mM; pH 10) with 10 μM polyethylene glycol tert‐octylphenyl ether as modifier. Good linearity relationships (correlation coefficients ranged from 0.9978 to 0.9994 for aldehydes) were obtained between the peak areas and concentration of the analytes (0.5–100 μg/L). The LODs for aldehydes were achieved at submicrogram‐per‐liter level (0.15–0.35 μg/L), which indicated that the proposed method surpassed other electrophoretric alternatives in terms of LOD, in many cases even at ca. 1000‐fold. The inter‐day precision (RSD, %) of the aldehydes ranged from 5.2 to 8.3%. Finally, the method was successfully applied to bottled drinking‐water samples, and the aldehydes were readily detected at 0.6–4.4 μg/L levels with average recoveries ranging from 99.1 to 103.5%.  相似文献   

6.
We describe a highly sensitive micro‐solid‐phase extraction method for the pre‐concentration of six phthalate esters utilizing a TiO2 nanotube array coupled to high‐performance liquid chromatography with a variable‐wavelength ultraviolet visible detector. The selected phthalate esters included dimethyl phthalate, diethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, bis(2‐ethylhexyl)phthalate and dioctyl phthalate. The factors that would affect the enrichment, such as desorption solvent, sample pH, salting‐out effect, extraction time and desorption time, were optimized. Under the optimum conditions, the linear range of the proposed method was 0.3–200 μg/L. The limits of detection were 0.04–0.2 μg/L (S/N = 3). The proposed method was successfully applied to the determination of six phthalate esters in water samples and satisfied spiked recoveries were achieved. These results indicated that the proposed method was appropriate for the determination of trace phthalate esters in environmental water samples.  相似文献   

7.
A new facile, rapid, inexpensive, and sensitive method for the analysis of six trace trichlorophenols in seawater samples was developed by magnetic micro‐solid‐phase extraction coupled to liquid chromatography with tandem mass spectrometry. Core–shell covalently functionalized ferroferric oxide coated with aminated silicon dioxide and decorated with multiwalled carbon nanotubes was applied as an adsorbent to perform the extraction process. The effect of factors including solution pH, contact time, adsorbent amount, and ionic strength were investigated in detail. The obtained results revealed that the proposed adsorbent was a highly effective and low‐cost magnetic micro‐solid‐phase extraction material for the enrichment of 2,3,4‐trichlorophenol, 2,3,5‐trichlorophenol, 2,3,6‐trichlorophenol, 2,4,5‐trichlorophenol, 2,4,6‐trichlorophenol, and 3,4,5‐trichlorophenol from seawater. Under the optimized conditions, the recoveries ranged from 88.0 to 99.5% at the three spiking levels, the limits of detection and the limits of quantification were 0.002 and 0.007 μg/L for the six trichlorophenols, respectively. The intra‐ and interday relative standard deviations were 2.0–6.7 and 4.5–8.9%, respectively. The calibration curves showed a good linearity in the range of 0.02–5.0 μg/L. The routine run analyses showed that the developed method was fast, simple, accurate, solvent‐saving and high resolution, and it was suitable for the determination of trace trichlorophenols in seawater.  相似文献   

8.
In this work, the determination of 11 pesticides (pirimicarb, metalaxyl, pyrimethanil, procymidone, nuarimol, azoxystrobin, tebufenozide, fenarimol, benalaxyl, penconazole, and tetradifon) in rose wines by micellar EKC (MEKC) using reversed electrode polarity stacking mode (REPSM) as online preconcentration strategy is described. The MEKC buffer consisted of 100 mM sodium tetraborate and 30 mM SDS at pH 8.5 with 6% v/v 1-propanol. A solid-phase microextraction (SPME) procedure using PDMS/divinylbenzene (PDMS/DVB) fibers was applied to extract the selected pesticides from the rose wine samples. The comparison between the calibration curves obtained from hydroalcoholic solutions (12% v/v ethanol) and from rose wines (matrix matched calibration) showed the existence of a strong matrix effect. Furthermore, a comparison with calibration curves obtained with white wine samples also showed significant differences for most of the analyzed pesticides. As a result, a matrix matched calibration was developed. Quantitative extraction from spiked wine samples was carried out in triplicate at two levels of concentration (range 0.18-6.00 mg/L). LODs between 0.040 and 0.929 mg/L were achieved, which are below the maximum residue limits (MRLs) established for wine grapes (except for pirimicarb) by the EU and Spain legislation as well as by the Codex Alimentarius. The established method - which is solvent free, cost effective, and fast - was also applied to the analysis of several homemade rose wine samples and a commercial one. Two of the selected pesticides were found in some of the analyzed samples.  相似文献   

9.
UV filters, contained in sunscreens and other cosmetic products, as well as in some plastics and industrial products, are nowadays considered contaminants of emerging concern because their widespread and increasing use has lead to their presence in the environment. Furthermore, some UV filters are suspected to have endocrine disruption activity. In the present work, we developed an analytical method based on liquid chromatography with tandem mass spectrometry for the determination of UV filters in tap and lake waters. Sixteen UV filters were extracted from water samples by solid‐phase extraction employing graphitized carbon black as adsorbent material. Handling 200 mL of water sample, satisfactory recoveries were obtained for almost all the analytes. The limits of detection and quantification of the method were comparable to those reported in other works, and ranged between 0.7–3.5 and 1.9–11.8 ng/L, respectively; however in our case the number of investigated compounds was larger. The major encountered problem in method development was to identify the background contamination sources and reduce their contribution. UV filters were not detected in tap water samples, whereas the analyses conducted on samples collected from three different lakes showed that the swimming areas are most subject to UV filter contamination.  相似文献   

10.
A method of reversed‐phase ion‐pair solid‐phase extraction combined with ion chromatography for determination of pyrrolidinium ionic liquid cations (N‐methyl‐N‐ethyl pyrrolidinium, N‐methyl‐N‐propyl pyrrolidinium, and N‐methyl‐N‐butyl pyrrolidinium) in water samples was developed in this study. First, ion‐pair reagent sodium heptanesulfonate was added to the water samples after static, centrifugation and filteration. Then, pyrrolidinium cations in the samples were enriched and purified by a reversed‐phase solid‐phase extraction column, and eluted from the column with methanol aqueous solution as eluent. Finally, the eluate collected was analyzed by ion chromatography. The separation and direct conductivity detection of these pyrrolidinium cations by ion‐exchange column using 1.0 mM methanesulfonic acid (in water)/acetonitrile (97:3, v:v) as mobile phase was achieved within 10 min. By using this method, pyrrolidinium cations in Songhua River and Hulan River were successfully extracted with the recoveries ranging from 74.2 to 97.1% and the enrichment factor assessed as 60. Pyrrolidinium cations with the concentration of 0.001?0.03 mg/L can be enriched and detected in the water samples. The developed method for the determination of pyrrolidinium ionic liquid cations in water samples is simple and reliable, which provides a reference for the study of the potential impact of ionic liquids on the environment.  相似文献   

11.
A method based on membrane‐protected micro‐solid‐phase extraction coupled with gas chromatography and mass spectrometry was developed for the determination of six ultraviolet filter compounds in various aqueous media. Multiwalled carbon nanotubes as the sorbent were encapsulated in a sealed polypropylene membrane packet and immersed in the sample to extract the analytes, and then dichloromethane was used for desorption purpose. The method was sensitive enough for quantitative analysis of the target analytes, with limits of quantification between 0.01 and 0.06 μg/L, and produced a linear response (R> 0.991) over the calibration range (0.05–6 μg/L). The obtained reproducibility was practically suitable with relative standard deviation values of less than 14% in pure water (spiked at 0.20/μg L) and less than 15% in real samples. The optimized method was applied for the analysis of real water samples with varying matrix complexity: tap, river, and dam water; geothermal spa; and sewage treatment plant effluent. Various levels and patterns of contamination were observed in the examined samples, while the sample from spa was the most contaminated, regarding the target analytes. Matrix spikes and matrix spike replicates were also analyzed to validate the technique for analysis of real aqueous samples, and satisfactory results were achieved.  相似文献   

12.
In the present study, highly efficient and simple dispersive solid‐phase extraction procedure for the determination of haloacetic acids in water samples has been established. Three different types of layered double hydroxides were synthesized and used as a sorbent in dispersive solid‐phase extraction. Due to the interesting behavior of layered double hydroxides in an acidic medium (pH?4), the analyte elution step was not needed; the layered double hydroxides are simply dissolved in acid immediately after extraction to release the analytes which are then directly introduced into a liquid chromatography with tandem mass spectrometry system for analysis. Several dispersive solid‐phase extraction parameters were optimized to increase the extraction efficiency of haloacetic acids such as temperature, extraction time and pH. Under optimum conditions, good linearity was achieved over the concentration range of 0.05–100 μg/L with detection limits in the range of 0.006–0.05 μg/L. The relative standard deviations were 0.33–3.64% (n = 6). The proposed method was applied to different water samples collected from a drinking water plant to determine the concentrations of haloacetic acids.  相似文献   

13.
A method was developed for the determination of nine volatile N‐nitrosamines in tobacco and smokeless tobacco products. The targets are N‐nitrosodimethylamine, N‐nitrosopyrrolidine, N‐nitrosopiperidine, N‐nitrosomorpholine, N‐nitrosoethylmethylamine, N‐nitrosodiethylamine, N‐nitrosodipropylamine, N‐nitrosobuylmethylmine, and N‐nitrosodibutylamine. The samples were treated by dispersive solid‐phase extraction using 1 g of primary secondary amine and 0.5 g of carbon and then analyzed by gas chromatography with tandem mass spectrometry with an electron impact ion source. The recoveries for the targets ranged from 84 to 118%, with <16% relative standard deviations at three spiking levels of 0.5, 1.25, and 2.5 ng/g. The limits of detection ranged from 0.03 to 0.15 ng/g. With the use of the proposed method, we detected the presence of six nitrosamines in the range of 0.4–30.7 ng/g. The study demonstrated that the method could be used as a rapid, convenient, and high‐throughput method for N‐nitrosamines analysis in tobacco matrix.  相似文献   

14.
I.-Lin Tsai  Churn-Shiouh Gau 《Talanta》2009,77(3):1208-1216
In-hospital deaths caused by the infection of methicillin-resistant Staphylococcus aureus (MRSA) are on the increase worldwide. Teicoplanin is a potent glycopeptide antibiotic against MRSA. A rapid and cost-saving micellar electrokinetic chromatography (MEKC) method combined with solid phase extraction (SPE) was developed and then validated to quantify teicoplanin in patient serum in this work. The method includes the following steps: (1) pretreatment of the serum samples with 10 M urea to denature proteins, (2) application of SPE by using an OASIS HLB cartridge to clean up and concentrate the serum samples, and (3) use of MEKC for sample analysis. Under the optimized conditions, the SPE recovery of teicoplanin is higher than 90%. The six major components of teicoplanin could be baseline-separated from one another and endogenous materials in 12 min with a background electrolyte composed of 20 mM sodium tetraborate buffer pH 8.8, 40 mM sodium dodecyl sulfate, and 11% (v/v) ACN. The relative standard deviation (R.S.D.) of the peak area ratios for method repeatability (n = 6) and intermediate precision (inter-day, n = 3) were found to be lower than 4.18% and 5.30%, respectively. The calibration curves were linear between the chromatographic response and total teicoplanin concentration over the range of 5 μg/mL to 55 μg/mL. Limit of detection (LOD) for each of the six components was found to be lower than 0.06 μg/mL. Pearson’s correlation revealed that a good correlation (r = 0.98) was obtained between the SPE-MEKC method and the fluorescence polarization immunoassay (FPIA) method. The developed method can be used to quantitatively determine serum teicoplanin concentration in patients for dose monitoring and clinical research.  相似文献   

15.
We have developed a method of liquid chromatography in tandem with mass spectrometry to monitor therapeutic levels of imatinib in plasma, a selective inhibitor of protein tyrosine kinase. After solid‐phase extraction of plasma samples, imatinib and its internal standard, imatinib‐D8, were eluted with Zorbax SB‐C18 at 60 °C, under isocratic conditions through a mobile phase consisting of 4 mm ammonium formate, pH: 3.2 (solution A) and acetonitrile solution B. The flow rate was 0.8 mL/min with 55% solution A + 45% solution B. Imatinib was detected and quantified by mass spectrometry with electrospray ionization operating in selected‐reaction monitoring mode. The calibration curve was linear in the range 10–5000 ng/mL, the lower limit of quantitation being 10 ng/mL. The method was validated according to the recommendations of the Food and Drug Administration, including tests of matrix effect (bias < 10%) and recovery efficiency (>80 and <120%). The method is precise (coefficient of variance intra‐day <2% and inter‐day <7%), accurate (95–108%), sensitive and specific. It is a simple method with very fast recording time (1.2 min) that is applicable to clinical practice. This will permit improvement of the pharmacological treatment of patients. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A method for the determination of 16 polycyclic aromatic hydrocarbons in water has been developed. First, we made a solid‐phase extraction column. After this, the parameters affecting the efficacy of the experimental method were optimized, including appropriate selection of a solid‐phase extraction column and cleanup conditions on columns. The separation was achieved by gas chromatography and detection with triple quadrupole tandem mass spectrometry. The method showed satisfactory linearity (R> 0.999) over the range assayed (0.01–1 μg/mL), and limits of quantification ranging from 0.0011 to 0.0199 μg/L. The recoveries ranged from 83 to 113%. The relative standard deviation is in the range 0.86–3.1%. The results indicated that this method had high selectivity and precision that was suitable for the simultaneous determination of 16 polycyclic aromatic hydrocarbons in water.  相似文献   

17.
We utilized ultra‐high performance liquid chromatography with tandem mass spectrometry and dispersive solid‐phase extraction to develop a new method for the detection of nine analytes (scopolamine, cephaeline, strychnine, hyoscyamine, brucine, hydrastine, ajmalicine, colchicine, and oleandrin) in herbal cosmetics. Acetonitrile/water and 2‐propylaminoethylamine were used to disperse and purify during the dispersive solid‐phase extraction step. The analytes were separated by a Waters UPLC HSS T3 column and detected through electrospray ionization source in the positive mode with multi‐reaction monitoring conditions. Under the optimal conditions, the calibration curves were linear in the range of 0.2–100.0 μg/L with the correlation coefficients higher than 0.995. The method limit of quantitation (S/N = 10) were 5.0 μg/kg for oleandrin and 1.0 μg/kg for the other eight alkaloids. The mean recoveries at three spiked concentration levels of 1.0–10.0 μg/kg were in the range of 86.9–116.5% with the intra‐day relative standard deviations (n  = 6) ranging from 2.4 to 8.8%, and inter‐day relative standard deviations ranging from 2.7 to 5.7%. This method is accurate, simple and rapid, and has been applied to the quality supervision of herbal cosmetics in Guangzhou.  相似文献   

18.
An analytical method was established for the simultaneous determination of seven nitrogen‐containing phenyl ethers (2‐anisidine, 3‐anisidine, 4‐anisidine, 2‐nitroanisole, 3‐nitroanisole, 4‐nitroanisole, and 3,3'‐dimethoxybenzidine) in cosmetics by gas chromatography with mass spectrometry in this work. The samples were extracted with ethyl acetate and purified with primary secondary amine during the dispersed solid‐phase extraction. The analytes were separated by a DB‐17MS column and detected in the electron ionization mode of mass spectrometry in the selected ions monitoring mode. The extraction solvent, purification adsorbents, and chromatographic column behavior were optimized. The results indicated that the seven analytes show good linear relationship (R 2 > 0.9965) in the concentrations of 5.0–5000 μg/L. The quantitation limits of the method ranged from 19.0 to 84.8 μg/kg. The recovery rates of seven analytes were in the range of 72.6–114% with the relative standard deviations of 1.1–7.5%. Real sample analyses showed that this accurate and precise method could be appropriate for simultaneous determination of seven nitrogen‐containing phenyl ethers in cosmetics.  相似文献   

19.
20.
A fast gas chromatography/mass spectrometry method was developed and validated for the analysis of the potential endocrine disrupters octinoxate and oxybenzone in swimming pool water samples based on the solvent‐free solid‐phase microextraction technique. The low‐pressure gas chromatography/mass spectrometry method used for the fast identification of UV filter substances was compared to a conventional method in terms of sensitivity and speed. The fast method proposed resulted in 2 min runs, leading to an eightfold decrease in the total analysis time and a sevenfold improvement in detection limits. The main parameters affecting the solid‐phase microextraction process were also studied in detail and the optimized conditions were as follows: fiber coating, polyacrylate; extraction mode, direct immersion; extraction temperature, 25°C; sample volume, 5 mL; extraction time 45 min; pH 6.5. Under the optimized conditions, a linear response was obtained in the concentration range of 0.5–25 μg/L with correlation coefficients in the range 0.990–0.999. The limits of detection were 0.17–0.29 μg/L, and the recoveries were 80–83%. Combined method uncertainty was assessed and found to be less than 7% for both analytes for concentrations equal to or higher than 5 μg/L. Pool water samples were analyzed to demonstrate the applicability of the proposed method. Neither octinoxate nor oxybenzone were detected in the swimming pool water samples at concentrations above the respective limits of detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号