首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple and rapid method for morphine detection is described based on PEDOT electrode in the presence of SDS. The electrochemistry of morphine is investigated by CV, LSV and SWV. The effect of common interferences on the current response of morphine namely AA and UA is studied. The electrode is applied to the selective determination of morphine in urine samples in the linear ranges 0.3–8 µmol L?1 and 10–60 µmol L?1, with low detection limits of 50 and 68 nmol L?1, respectively and recovery of 96.4 %. The application of PEDOT is realized in determination of morphine in tablets successfully.  相似文献   

2.
Platinum electrodes in microcylindrical and tubular arrangements were compared as working electrodes for amperometric detection of 2‐aminobiphenyl, 4‐aminobiphenyl, 1‐aminonaphthalene, and 2‐aminonaphthalene in HPLC. Factors influencing separation efficiency are favourable for microcylindrical arrangement while tubular arrangement exhibits higher sensitivities and lower limits of detection. These are in the range of 0.0078–0.027 µmol L?1 for tubular, and 0.11–0.42 µmol L?1 for microcylindrical arrangement. Further, a new method with nanomolar detection limits was proposed for determination of tested compounds in urine using solid phase extraction for preliminary separation and preconcentration of the analytes.  相似文献   

3.
Determination of cysteamine and tryptophan is described by electrochemical methods using p‐aminophenol‐multiwall carbon nanotubes paste electrode. Cysteamine and tryptophan in mixture can each be measured independently from each other with a potential difference of 600 mV. The results showed that the electrocatalytic currents increased linearly with cysteamine and tryptophan concentrations over the ranges 0.5–300 µmol L?1 and 10.0–650 µmol L?1, respectively. The detection limits for cysteamine and tryptophan are found to be 0.14 and 5.9 µmol L?1, respectively. The proposed method is successfully employed for the determination of cysteamine in both capsule and urine samples.  相似文献   

4.
The present work describes the development of a selective and sensitive voltammetric sensor for simultaneous determination of catechol (CC) and hydroquinone (HQ), based on a glassy carbon (GC) electrode modified with manganese phthalocyanine azo‐macrocycle (MnPc) adsorbed on multiwalled carbon nanotubes (MWCNT). Scanning electron microscopy and scanning electrochemical microscopy were used to characterize the composite material (MnPc/MWCNT) on the glassy carbon electrode surface. The modified electrode showed excellent electrochemical activity towards the simultaneous oxidation and reduction of CC and HQ. On the MnPc/MWCNT/GC electrode, both CC and HQ can generate a pair of quasi‐reversible and well‐defined redox peaks. Under optimized experimental and operational conditions, the cathodic peak currents were linear over the range 1–600 µmol L?1 for both CC and HQ, with limits of detection of 0.095 and 0.041 µmol L?1, respectively. The anodic peak currents were also linear over the range 1–600 µmol L?1 for both CC and HQ, with limits of detection of 0.096 and 0.048 µmol L?1, respectively. The proposed method was effectively applied for the simultaneous detection of hydroquinone and catechol in water samples and the results were in agreement with those obtained by a comparative method described in the literature.  相似文献   

5.
A simple and fast voltammetric method based on a new electrode composed of carbon paste electrode/bifunctional hybrid ion imprinted polymer (CPE/IIP) was developed for the quantification of Cd2+ in water samples. The voltammetric measurements by Differential Pulse Voltammetry were performed by using CPE containing 11.0 mg of IIP under phosphate buffer solution at concentration 0.1 mol L?1 and pH 6.5. The electrochemical method was carried out by Cd2+ preconcentration at ?1.2 V during 210 s, followed by anodic stripping. The performance of IIP towards Cd2+ determination was evaluated by comparison to non-imprinted polymer, whose detectability of IIP was much higher (45%). The sensitivity of the sensor was found to be 0.0105 µA/µg L?1. The limits of detection and limits of quantification were found to be 4.95 μg L?1 and 16.4 μg L?1, respectively. The developed method was successfully applied to Cd2+ determination in mineral, tap and lake water samples, whose results are in agreement with thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) used as reference analytical technique. According to achieved results, the developed method can be used for routine analysis of quality control of water samples from different sources.  相似文献   

6.
A new highly sensitive and selective electrochemical levofloxacin sensor based on co‐polymer‐carbon nanotube composite electrode was developed. Taurine and Glutathione were electrochemically co‐polymerized on multiwalled carbon nanotubes modified glassy carbon electrode (Poly(TAU‐GSH)/CNT/GCE) and used as a levofloxacin sensor in pH 6 phosphate buffer solution. The new composite electrode surfaces were characterized by scanning electron microscopy, atomic force microscopy and electrochemical impedance spectroscopy. Under the optimized conditions, two linear segments were obtained for increasing LEV concentrations between 20 nmol L?1‐1 μmol L?1 and 1.5 μmol L?1‐55 μmol L?1 LEV with a detection limit of 9 nmol L?1 using amperometry. Poly(TAU‐GSH)/CNT/GCE exhibited high sensitivity, selectivity with good stability. The new sensor was employed for real samples of LEV tablets and urine. Promising results were obtained with good accuracy which were also in accordance with LC‐MS/MS analysis.  相似文献   

7.
The electrochemical reduction of carbamazepine in acetonitrile (ACN) and dimethylformamide (DMF) using a glassy carbon electrode and microelectrodes has been studied. The reduction process is consistent with an electrochemical‐chemical mechanism (EC) involving a two electron transfer followed by a first order reaction, as shown by the cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Half‐wave potential, number of electron transferred, diffusion coefficient and rate constant of the associated chemical reaction are reported. Limits of detection (LOD) for DPV are 0.92 and 0.76 µg mL?1 (3.89×10?6 mol L?1 and 3.21×10?6 mol L?1) in ACN and DMF, respectively. Precision (%RSD) and recovery (%) values when pharmaceutical compounds (200mg carbamazepine tablets) and spiked plasma samples were tested ranged from 1.09 to 9.04 % and % recoveries ranged from 96 to 104.1 %.  相似文献   

8.
A multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode (MWNT-GCE) was used to study the electrochemical behaviour of1-hydroxypyrene (1-OHP) and applied to its determination. The results showed that the modified electrode had a strong adsorptive ability to 1-OHP and enhances its electrochemical signal. By square wave voltammetry, the linear relationship of 1-OHP was 6?×?10?9???8?×?10?7?mol?L?1 with a linear correlation coefficient of 0.996, and the detection limit was 1?×?10?10?mol?L?1. Compared with other published methods, this newly proposed method possesses many advantages such as very low detection limit, fast response, low cost and simplicity. And this method was applied successfully in the determination of 1‐OHP in real human urine samples.  相似文献   

9.
《Electroanalysis》2004,16(7):524-531
In this work we report a new electrode material formed by injection‐moulding of a conducting polymer consisting of carbon fibers in a Nylon matrix. This material is highly conductive, inexpensive, easy to mould in different shapes and requires minimal pretreatment. The electrode was tested as a mercury‐free sensor for the trace determination of Cu(II) by anodic stripping voltammetry (ASV). The deposition and stripping behavior of copper on the conducting material was initially studied by cyclic voltammetry and the chemical and instrumental parameters of the determination were investigated. The electrode has been shown to be suitable for the determination of Cu(II) in the range 8 μg L?1 to 30 mg L?1 (with deposition times ranging from 30 s to 10 min) with a relative standard deviation of 2.2% (at the 0.5 mg L?1 level) and a limit of detection of 8 μg L?1 Cu(II) for 10 min of accumulation (at a S/N ratio of 5). The electrode was, finally, applied to the determination of copper in tap‐water, pharmaceutical tablets and bovine serum with recoveries of 97.4, 94.9 and 93.4%, respectively  相似文献   

10.
Bioelectrodes were developed based on a simple deposition of graphene oxide (GO) or reduced graphed oxide (rGO) and laccase (Lac) on a glassy carbon (GC) electrode surface. The morphology and electrochemical behavior of the biosensors were characterized by scanning electron microscopy and cyclic voltammetry. These results demonstrated that only rGO was successfully applied for the immobilization of the laccase enzyme, improving the analytical signal for the determination of dopamine. The GC/rGO/Lac biosensor was applied to the detection of dopamine in synthetic urine and plasmatic serum samples, achieving a detection limit of 91.0 nmol L?1.  相似文献   

11.
A sensitive way to determine levofloxacin using a sensor based on vertical aligned carbon nanotubes is described. The morphology and the electrochemical performance of the electrodes were characterised by atomic force microscopy, cyclic voltammetry and square wave voltammetry. A scan‐rate study and electrochemical impedance spectroscopy showed that the levofloxacin oxidation product is adsorbed on the electrode surface. Differential pulse voltammetry in phosphate‐buffer solution allowed the development of a method to determine levofloxacin levels in the range of 1.0–10.0 µmol L?1, with a detection limit of 75.2 nmol L?1. The proposed sensor was successfully applied in the determination of levofloxacin in urine, and the obtained results were in full agreement with those from the HPLC procedure.  相似文献   

12.
A novel synthesized tetraamino cobalt(II) phthalocyanine monomer was used for the fabrication of a sensor by electrochemical polymerization. A disposable electrochemical sensor based on the use of a screen printed carbon electrode covered with an electropolymerized film of tetraamino cobalt(II) phthalocyanine for the determination of L-dopa in pharmaceutical tablets and biological samples was described. Cyclic voltammetry and electrochemical impedance spectroscopy were performed for the characterization of the bare and modified electrode. For the electrochemical detection of L-dopa differential pulse voltammetry was used. The proposed method exhibits a good response towards electrooxidation of L-dopa in the linear concentration range: from 0.1 to 1000.0 μmol L−1 in BRB pH=2.0, with a detection limit of 0.03 μmol L−1 and from 1 to 1000 μmol L−1 in PBS pH=7.4, with a detection limit of 0.33 μmol L−1. Due to the fact that the developed sensor was applied in two different types of real samples, two buffer media were used, BRB pH=2.0 for pharmaceutical and urine samples and PBS pH=7.4 for whole blood samples. The proposed pCoTAPc/SPCE was successfully applied for the determination of L-dopa in pharmaceutical tablets, urine and in whole blood samples with satisfactory results.  相似文献   

13.
《Analytical letters》2012,45(12):1976-1988
A sensitive and selective electrochemical method for the simultaneous determination of dopamine (DA) and uric acid (UA) was developed using a pyrogallol red modified carbon paste electrode. Under the optimized conditions, the peak current was linearly dependent on 1.0–700.0 μmol L?1 DA and 50.0–1000.0 μmol L?1 UA. The detection limits for DA and UA were 0.78 μmol L?1 and 35 μmol L?1, respectively. Finally, this method was also examined for the determination of DA and uric acid in real samples such as drugs and urine.  相似文献   

14.
《Analytical letters》2012,45(8):883-893
A multi-wall carbon nanotubes (MWNTs) and cobalt(II) tetrakisphenylporphyrin (Co(II)TPP) modified glassy carbon electrode (MWNTs/Co(II)TPP/GCE) has been prepared. It can be used for individual or simultaneous determination of hydroquinone (HQ) and catechol (CC). The anodic peaks of HQ and CC can be separated well. Owing to the unique properties of MWNTs and special synergistic effect of MWNTs and Co(II)TPP, the modified electrode exhibited a remarkable and stable current response for CC and HQ. The linear ranges for CC and HQ were 1.0–450.0 µmol L?1 and 0.8–400.0 µmol L?1 with detection limits of 0.8 µmol L?1 and 0.5 µmol L?1, respectively. Furthermore, Co(II)TPP, MWNTs, and Co(II)TPP/MWNTs composite were also used to construct modified electrodes and the electrochemical performances were studied.  相似文献   

15.
We report on the design of a UO22+‐selective electrode based on the use of UO22+ imprinted polymer nanoparticles (IP‐NPs), and its application for the differential pulse adsorptive cathodic stripping voltammetry determination of uranyl ions. A carbon paste electrode was modified with the IP‐NPs, and differential pulse adsorptive cathodic stripping voltammetry was applied as the detection technique after open‐circuit sorption of UO22+ ions. The modified electrode responses to UO22+ was linear in the 0.1 µg L?1 to 10 µg L?1 and in the 0.01 mg L?1 to 10 mg L?1. The method detection limit of the sensor was 0.03 µg L?1.  相似文献   

16.
A simple, low-cost and sensitive electroanalytical method was developed for the simultaneous determination of p-nitrophenol and o-nitrophenol isomers in water samples at a glassy carbon electrode (CGE) in the presence of cationic surfactant. The electrochemical behavior of p-nitrophenol and o-nitrophenol was studied by cyclic voltammetry (CV) in 0.1?mol L?1 acetate/acetic acid buffer (pH 3.70) in the presence and absence of cetylpyridinium bromide. The resolution of overlapped cathodic peaks potentials (Epc) of isomers was successfully improved in the presence of 100.0?µmol L?1 cetylpyridinium bromide, thus making this approach ideal for the simultaneous determination of isomers. Under the optimized conditions in 0.05?mol L?1 HEPES buffer at pH 7.0 using differential pulse voltammetry (DPV) at a scan rate of 45?mV s?1, pulse amplitude of 220?mV and modulation time of 10?ms, limits of detection 0.59?µmol L?1 for p-nitrophenol and 1.14?µmol L?1 for o-nitrophenol were obtained with linear ranges from 2.0 to 60.0?µmol L?1 and 3.0 to 60.0?µmol L?1, respectively. The intraday precision was assessed as relative standard deviation (%) for 20.0 and 40.0?µmol L?1 concentrations were 4.30% and 2.41% for p-nitrophenol and 4.87% and 2.20% for o-nitrophenol, respectively. The developed method was applied for the determination of the isomers in lake water samples. The accuracy was attested by comparison with high-performance liquid chromatography with diode array detection (HPLC-DAD) as a reference analytical technique. Recovery values ranging from 90.3% to 111.8% also attested to the accuracy of method for analysis of real samples.  相似文献   

17.
A new electrochemical sensor was fabricated via TiO2 nanoparticles onto a carbon paste electrode. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) studied the response of the modified electrode toward codeine. The effects of pH, modifier amount, pulse amplitude, and scan rate of potential have been examined. Using DPV, we could measure simultaneously codeine and acetaminophen in one mixture. The detection limits of 0.018 and 0.050 µmol L?1 were achieved for codeine and acetaminophen, respectively. The electrooxidation pathway, transfer coefficient, and standard rate constant, are estimated. The proposed voltammetric sensor was successfully applied to determination of codeine and acetaminophen in human plasma serum samples.  相似文献   

18.
In this work, a new method based on homogeneous liquid-phase microextraction was developed for the determination of methadone and tramadol. Dipropylamine was used as extraction solvent with switchable hydrophilicity that can be miscible/immiscible upon the addition or removal of CO2 as a reagent. The effects of operational parameters of the extraction such as volume of acceptor phase, volume of donor phase, pH of donor phase, and ionic strength of solution were investigated. Under optimal conditions, the preconcentration factors, the detection limits and the linearity of the method were achieved in the ranges of 135–138, 1.2 and 4–1000 µg L?1, respectively. Finally, the proposed method has been successfully applied to the analysis of methadone and tramadol in urine samples. In urine sample, the preconcentration factors were 118 and 122 for methadone and tramadol, respectively. Additionally, calibration curves were found to be linear in the concentration range of 8–1000 µg L?1 with the r2 values better than 0.998. In addition, limits of detection and quantification were 2.4 and 8 µg L?1, respectively, for both analytes.  相似文献   

19.
Bismuth film modified and chemically activated carbon micro‐thread electrodes were investigated for the simultaneous determination of Cd(II) and Pb(II) using square wave anodic stripping voltammetry. The carbon thread electrode was characterised using both surface and electrochemical techniques. Electrochemical impedance spectroscopy (EIS) studies demonstrated that the H2SO4/IPA‐treated carbon thread electrode showed a much improved resistance response (Rct=23 Ω) compared to the IPA‐untreated carbon thread (Rct=8317 Ω). Furthermore, parameters such as the effect of deposition potential, deposition time and Bi(III) concentration were explored using square wave voltammetry. Detection limits (S/N=3) for Cd(II) and Pb(II) were found to be 1.08 µg L?1 and 0.87 µg L?1, respectively and response was found to be linear over the range 5–110 µg L?1. The proposed Bi/IPA‐treated carbon thread electrode exhibited a high selectivity towards Cd(II) and Pb(II) even in the presence of a range of heavy metals and is capable of repetitive and reproducible measurements, being attributed to the high surface area, geometry and electrode treatment characteristics. The proposed metal ion sensor was employed to determine cadmium and lead in river water samples and % RSD was found to be 5.46 % and 5.93 % for Cd(II) and Pb(II) respectively (n=3). Such facile sensing components favour the development of cost effective portable devices for environmental sample analysis and electrochemical applications.  相似文献   

20.
《Analytical letters》2012,45(2):248-258
A poly(diallyldimethylammonium chloride)-graphene-multiwalled carbon nanotube modified glassy carbon electrode was fabricated and evaluated by cyclic voltammetry and differential pulse voltammetry. The modified electrode offered high sensitivity, selectivity, excellent long-term stability, and electrocatalytic activity for uric acid and dopamine. This sensor showed wide linear dynamic ranges of 5.0 to 350.0 µmol L?1 for uric acid and 10.0 to 400.0 µmol L?1 for dopamine in the presence of 500 µmol L?1 ascorbic acid. The limits of detection were 0.13 for uric acid and 0.55 µmol L?1 for dopamine. This functionalized electrode has potential application in bioanalysis and biomedicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号