首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methyl methacrylate/styrene (MMA/S), ethyl methacrylate/styrene (EMA/S) and butyl methacrylate/styrene (BMA/S) feeds (>90 mol % methacrylate) were copolymerized in 50 wt % p‐xylene at 90 °C with 10 mol % of additional SG1‐free nitroxide mediator relative to unimolecular initiator (BlocBuilder®) to yield methacrylate rich copolymers with polydispersities w/ n = 1.23–1.46. kpK values (kp = propagation rate constant, K = equilibrium constant) for MMA/S copolymerizations were comparable with previous literature, whereas EMA/S and BMA/S copolymerizations were characterized by slightly higher kpK's. Chain extensions with styrene at 110 °C initiated by the methacrylate‐rich macroinitiators (number average molecular weight n = 12.9–33.5 kg mol?1) resulted in slightly broader molecular weight distributions with w/ n = 1.24–1.86 and were often bimodal. Chain extensions with glycidyl methacrylate/styrene/methacrylate (GMA/S/XMA where XMA = MMA, EMA or BMA) mixtures at 90 °C using the same macroinitiators resulted frequently in bimodal molecular weight distributions with many inactive macroinitiators and higher w/ n = 2.01–2.48. P(XMA/S) macroinitiators ( n = 4.9–8.9 kg mol?1), polymerized to low conversion and purified to remove “dead” chains, initiated chain extensions with GMA/MMA/S and GMA/EMA/S giving products with w/ n ~ 1.5 and much fewer unreacted macroinitiators (<5%), whereas the GMA/BMA/S chain extension was characterized by slightly more unreacted macroinitiators (~20%). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2574–2588, 2009  相似文献   

2.
The synthesis and properties of the ion exchange polymer 3‐n‐propyl(3‐methylpyridinium)silsesquioxane chloride (SiPy+Cl?) are described. Based on the Langmuir model, the equilibrium constant at the solid‐solution interface for the reaction, SiPy+Cl?+NO ?SiPy+NO , was calculated for nitrite adsorption. The value found, β=8.7×103 L mol?1, indicates good affinity of the anion for the solid phase. A carbon paste electrode of the material was tested for NO oxidation and a linear response, in the concentration range between 6.3 and 143.6 μmol L?1, was obtained by amperometry. The analytical applicability of the proposed system was ascertained by the satisfactory results attained in its application to monitoring of nitrite in natural waters.  相似文献   

3.
Taking a close look at the Infeld–Hull ladder operators for the Kratzer oscillator system, V(x) = [x2 + β(β ? 1)x?2]/2, we deduce and explicitly construct energy‐raising and ‐lowering operators for the generalized Morse potential system V(z) = (Ae?4αz ? Be?2αz)/2, through a canonical transformation that exists between the two systems. For the Morse potential system, we obtain a system of raising and lowering operators P±(n) (n = 0, 1, 2, 3, … , nmax) with the specific property that P±(nn = c±(nn±1, where Φn denotes the nth energy eigenfunction. While P?(0) annihilates the ground‐state Φ0, the operator P+(nmax), instead of annihilating the highest bound‐state Φ, actually knocks it out of the L2 space spanned by the discrete bound states and becomes inadmissible. Yet, raising and lowering operators ± with proper end‐of‐spectrum behavior (i.e., ?|0〉 = 0 and +|nmax〉 = 0) can be constructed in a straightforward way in the energy representation. We show that the operators +, ?, and 0 (where 0 ≡ (1/2)[ +, ?]) form a su(2) algebra only if we restrict them to the (N ? 1)‐dimensional subspace spanned by the lowest (N ? 1) basis vectors, but not in the full (N + 1)‐dimensional space spanned by the discrete bound states [Nnmax ≡ integral part of (1/2)(B/(2α ) ? 1)]. Realization of this su(2) algebra in the position representation (when restricted to the (N ? 1)‐dimensional subspace) is also given. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

4.
The effect of H2 on propylene polymerization initiated by a MgCl2/EB/PC/AlEt3/TiCl4–3 AlEt3/MPT catalyst was studied. Hydrogen increases significantly the initial rate during the early stage of the polymerization to give a higher yield of polymer than reactions without H2. But H2 reduces the yield toward the latter stages so that the net effect on the total yield can be quite small. There is no appreciable effect of H2 on either the isotacticity index or polydispersity of the products. It decreases molecular weight proportional to (pH2)1/2. The chain transfer by H2 resulted in a decrease of total metal polymer bond concentration with time of polymerization. The rate constants of hydrogen chain transfer for the two kinds of isospecific and nonspecific sites are = 5.1 × 10?3, = 2.7 × 10?3, = 7.5 × 10?3, = 4.4 × 10?3, in units of torr1/2 sec?1 at 50°. Hydrogen assists in the deactivation of the catalytic sites as does propylene; rates of the former and the latter vary with (pH2)1/2 and [C3H6]1/2, respectively, with k = (12.1 ± 0.9) M?1 torr?1/2 sec?1 and k = (65.3 ± 3.3) M?3/2 sec?1 at 50° and A/T = 167. The mechanism for deactivation of catalytic sites are discussed.  相似文献   

5.
A new electrochemical biosensor was constructed by immobilization of hemoglobin (Hb) on a DNA modified carbon ionic liquid electrode (CILE), which was prepared by using 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIMBF4) as the modifier. UV‐vis absorption spectroscopic result indicated that Hb remained its native conformation in the composite film. The fabricated Nafion/Hb/DNA/CILE was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). A pair of well‐defined redox peaks was obtained on the modified electrode, indicated that the Nafion and DNA composite film provided an excellent biocompatible microenvironment for keeping the native structure of Hb and promoting the direct electron transfer rate of Hb with the basal electrode. The electrochemical parameters of Hb in the composite film were further calculated with the results of the charge transfer coefficient (α) and the apparent heterogeneous electron transfer rate constant (ks) as 0.41 and 0.31 s?1. The proposed electrochemical biosensor showed good electrocatalytic response to the reduction of trichloroacetic acid (TCA), H2O2, NO and the apparent Michaelis–Menten constant (KMapp) for the electrocatalytic reaction was calculated, respectively.  相似文献   

6.
Manganese oxides are considered to be very promising materials for water oxidation catalysis (WOC), but the structural parameters influencing their catalytic activity have so far not been clearly identified. For this study, a dozen manganese oxides (MnOx) with various solid‐state structures were synthesised and carefully characterised by various physical and chemical methods. WOC by the different MnOx was then investigated with Ce4+ as chemical oxidant. Oxides with layered structures (birnessites) and those containing large tunnels (todorokites) clearly gave the best results with reaction rates exceeding 1250 ${{\rm{mmol}}_{{\rm{O}}_{\rm{2}} } }$ ${{\rm{mol}}_{{\rm{Mn}}}^{ - 1} }$ h?1 or about 50 μmolO2 m?2 h?1. In comparison, catalytic rates per mole of Mn of oxides characterised by well‐defined 3D networks were rather low (e.g., ca. 90 ${{\rm{mmol}}_{{\rm{O}}_{\rm{2}} } }$ ${{\rm{mol}}_{{\rm{Mn}}}^{ - 1} }$ h?1 for bixbyite, Mn2O3), but impressive if normalised per unit surface area (>100 ${{\rm{{\rm \mu} mol}}_{{\rm{O}}_{\rm{2}} } }$ m?2 h?1 for marokite, CaMn2O4). Thus, two groups of MnOx emerge from this screening as hot candidates for manganese‐based WOC materials: 1) amorphous oxides with tunnelled structures and the well‐established layered oxides; 2) crystalline MnIII oxides. However, synthetic methods to increase surface areas must be developed for the latter to obtain good catalysis rates per mole of Mn or per unit catalyst mass.  相似文献   

7.
Gas permeability and permselectivity are investigated for polybenzoxazoles from bis(3-amino-4-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropane (BAHHP) and aromatic diacid chlorides. Effects of thermal cyclization on the permeation properties are also investigated. The polybenzoxazole from BAHHP and 4,4′-(1,1,1,3,3,3-hexafluoroisopropylidene)dibenzoyl chloride (HFDB) displays high performance for CO2/CH4 separation ( $ {\rm P}_{{\rm CO}_2 } $ = 6.1 × 10?9 cm3 (STP) cm?1 s?1 cm-Hg?1, and $ {{{\rm P}_{{\rm CO}_2 } } \mathord{\left/ {\vphantom {{{\rm P}_{{\rm CO}_2 } } {{\rm P}_{{\rm CH}_4 } }}} \right. \kern-\nulldelimiterspace} {{\rm P}_{{\rm CH}_4 } }} $ = 38 at 35°C). The polybenzoxazole from BAHHP and 2,6-naphthalene dicarbonyl chloride displays high performance for H2/CO or H2/CH4 separation ( $ {\rm P}_{{\rm H}_2 } $ = 2.4 × 10?9 cm3 (STP) cm?1 s?1 cm-Hg?1, $ {{{\rm P}_{{\rm H}_2 } } \mathord{\left/ {\vphantom {{{\rm P}_{{\rm H}_2 } } {{\rm P}_{{\rm CO}} }}} \right. \kern-\nulldelimiterspace} {{\rm P}_{{\rm CO}} }} $ = 71, and $ {{{\rm P}_{{\rm H}_2 } } \mathord{\left/ {\vphantom {{{\rm P}_{{\rm H}_2 } } {{\rm P}_{{\rm CH}_{\rm 4} } }}} \right. \kern-\nulldelimiterspace} {{\rm P}_{{\rm CH}_{\rm 4} } }} $ = 250). Permeation properties for the polybenzoxazole from BAHHP and HFDB are close to those for a polyimide of similar chemical structure. The permeation properties are discussed in connection with packing density and local segmental mobility. © 1992 John Wiley & Sons, Inc.  相似文献   

8.
The kinetics of the gas-phase reaction of 2,2,2-trifluoroethyl iodide with hydrogen iodide has been studied over the temperature range of 525°K to 602°K and a tenfold variation in the ratio of CF3CH2I/HI. The experimental results are in good agreement with the expected free radical-mechanism: An analysis of the kinetic data yield: where θ =2.303RT in kcal/mol. If these results are combined with the assumption that E2 = 0 ± 1 kcal/mol, then one obtains DH (CF3CH2? I) = 56.3 kcal/mol. This result may be compared with DH(CH3CH2? I) = 52.9 kcal/mol and suggests that substitution of three fluorines for hydrogen in the beta position strengthens the C? I bond slightly.  相似文献   

9.
The results of comprehensive equilibrium and kinetic studies of the iron(III)–sulfate system in aqueous solutions at I = 1.0 M (NaClO4), in the concentration ranges of T = 0.15–0.3 mM, and at pH 0.7–2.5 are presented. The iron(III)–containing species detected are FeOH2+ (=FeH?1), (FeOH) (=Fe2H?2), FeSO, and Fe(SO4) with formation constants of log β = ?2.84, log β = ?2.88, log β = 2.32, and log β = 3.83. The formation rate constants of the stepwise formation of the sulfate complexes are k1a = 4.4 × 103 M?1 s?1 for the ${\rm Fe}^{3+} + {\rm SO}_4^{2-}\,\stackrel{k_{1a}}{\rightleftharpoons}\, {\rm FeSO}_4^+The results of comprehensive equilibrium and kinetic studies of the iron(III)–sulfate system in aqueous solutions at I = 1.0 M (NaClO4), in the concentration ranges of T = 0.15–0.3 mM, and at pH 0.7–2.5 are presented. The iron(III)–containing species detected are FeOH2+ (=FeH?1), (FeOH) (=Fe2H?2), FeSO, and Fe(SO4) with formation constants of log β = ?2.84, log β = ?2.88, log β = 2.32, and log β = 3.83. The formation rate constants of the stepwise formation of the sulfate complexes are k1a = 4.4 × 103 M?1 s?1 for the ${\rm Fe}^{3+} + {\rm SO}_4^{2-}\,\stackrel{k_{1a}}{\rightleftharpoons}\, {\rm FeSO}_4^+$ step and k2 = 1.1 × 103 M?1 s?1 for the ${\rm FeSO}_4^+ + {\rm SO}_4^{2-} \stackrel{k_2}{\rightleftharpoons}\, {\rm Fe}({\rm SO}_4)_2^-$ step. The mono‐sulfate complex is also formed in the ${\rm Fe}({\rm OH})^{2+} + {\rm SO}_4^{2-} \stackrel{k_{1b}}{\longrightarrow} {\rm FeSO}_4^+$ reaction with the k1b = 2.7 × 105 M?1 s?1 rate constant. The most surprising result is, however, that the 2 FeSO? Fe3+ + Fe(SO4) equilibrium is established well before the system as a whole reaches its equilibrium state, and the main path of the formation of Fe(SO4) is the above fast (on the stopped flow scale) equilibrium process. The use and advantages of our recently elaborated programs for the evaluation of equilibrium and kinetic experiments are briefly outlined. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 114–124, 2008  相似文献   

10.
The γ-distonic radical ions R$ \mathop {\rm O}\limits^ + $CHR′CH2?HR″ and their molecular ion counterparts R$ \mathop {\rm O}\limits^{{\rm + } \cdot } $CHR′CH2CH2R″ have been studied by isotopic labelling and collision-induced dissociation, applying a potential to the collision cell in order to separate activated from spontaneous decompositions. The stability of CH3$ \mathop {\rm O}\limits^ + $HCH(CH3)CH2?HCH3, C2H5$ \mathop {\rm O}\limits^ + $HCH(CH3)CH2?HCH3, CH3$ \mathop {\rm O}\limits^ + $HCH(CH3)CH2?H2, CH3$ \mathop {\rm O}\limits^ + $HCH2CH2?HCH3 and C2H5$ \mathop {\rm O}\limits^ + $HCH2CH2?HCH3, has been demonstrated and their characteristic decomposition, alcohol loss, identified. For all these γ-distonic ions, the 1,4-H abstraction leading to their molecular ion counterpart exhibits a primary isotope effect.  相似文献   

11.
By using isobutane (t-BuH) as a radical trapit has been possible to study the initial step in the decomposition of dimethyl peroxide (DMP) over the temperature range of 110–140°C in a static system. For low concentrations of DMP (2.5 × 10?5?10?4M) and high pressures of t?BuH (~0.9 atm) the first-order homogeneous rate of formation of methanol (MeOH) is a direct measure of reaction (1): \documentclass{article}\pagestyle{empty}\begin{document}${\rm DMP}\mathop \to \limits^1 2{\rm Me}\mathop {\rm O}\limits^{\rm .},{\rm Me}\mathop {\rm O}\limits^{\rm .} + t{\rm - BuH}\mathop \to \limits^4 {\rm MeOH} + t{\rm -}\mathop {\rm B}\limits^{\rm .} {\rm u}$\end{document}. For complete decomposition of DMP in t-BuH, virtually all of the DMP is converted to MeOH. Thus DMP is a clean thermal source of Me\documentclass{article}\pagestyle{empty}\begin{document}$\mathop {\rm O}\limits^{\rm .}$\end{document}. In the decomposition of pure DMP complications arise due to the H-abstraction reactions of Me\documentclass{article}\pagestyle{empty}\begin{document}$\mathop {\rm O}\limits^{\rm .}$\end{document} from DMP and the product CH2O. The rate constant for reaction (1) is given by k1 = 1015.5?37.0/θ sec?1, very similar to other dialkyl peroxides. The thermochemistry leads to the result D(MeO? OMe) = 37.6 ± 0.2 kcal/mole and /H(Me\documentclass{article}\pagestyle{empty}\begin{document}$\mathop {\rm O}\limits^{\rm .}$\end{document}) = 3.8 ± 0.2 kcal/mole. It is concluded that D(RO? OR) and D(RO? H) are unaffected by the nature of R. From ΔS and A1, k2 is calculated to be 1010.3±0.5 M?1· sec?1: \documentclass{article}\pagestyle{empty}\begin{document}$2{\rm Me}\mathop {\rm O}\limits^{\rm .} \mathop \to \limits^2 {\rm DMP}$\end{document}. For complete reaction, trace amounts of t-BuOMe lead to the result k2 ~ 109 M?1 ·sec?1: \documentclass{article}\pagestyle{empty}\begin{document}$2t{\rm - Bu}\mathop \to \limits^5$\end{document} products. From the relationship k6 = 2(k2k5a)1/2 and with k5a = 108.4 M?1 · sec?1, we arrive at the result k6 = 109.7 M?1 · sec?1: \documentclass{article}\pagestyle{empty}\begin{document}$2t{\rm - u}\mathop {\rm B}\limits^{\rm .} \to (t{\rm - Bu)}_{\rm 2}{\rm,}t{\rm -}\mathop {\rm B}\limits^{\rm .} {\rm u} + {\rm Me}\mathop {\rm O}\limits^{\rm .} \mathop \to \limits^6 t{\rm - BuOMe}$\end{document}.  相似文献   

12.
Four titanium silanolates Ti(OSiR2R′)4 (1, R = Ph, R′ = tBu; 2, R = R′ = Ph; 3, R = R′ = iPr; 4, R = Me, R′ = tBu) were synthesised starting from Ti(OiPr)4 and the corresponding silanol, and their thermally induced decomposition was studied. Colourless single crystals of Ti(OSiPh Bu) CHCl C7H8 ( CHCl C7H8) were obtained from a mixture of chloroform and toluene (1:1) at ?20 °C. The compound crystallizes in the space group R3 c with Z = 18. The metal atom shows an almost ideal tetrahedral coordination, as is demonstrated by the O? Ti? O angles of 108.4(1)–111.1(1)°. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Polymerizations of ethylene by the MgCl2/ethylbenzoate/p-cresol/AlEt3 TiCl4-AlEt3/methyl-p-toluate (CW-catalyst) have been studied. The initially formed active site concentration, [Ti] has a maximum value of 50% of total titanium at 50°C and lower values at other temperatures. The Ti decays rapidly to Ti sites with conc. ca. 10 mol %/mol Ti. The rate constants for four chain transfer processes have been obtained at 50°C: for transfer with AlEt3, k = 2.1 × 10?4 s?1 and k = 4.8 × 10?4 s?1; for transfer with monomer, k = 3.6 × 10?3 (M s)?1 and K = 8.3 × 10?3 (M s)?1; for β-hydride transfer, k = 7.2 × 10?4 s?1 and k = 4.9 × 10?4 s?1; and transfer with hydrogen, k = 4.0 × 10?3 torr1/2 s? and k = 5.1 × 10?3 torr1/2 s?1. The rate constants for the termination assisted by hydrogen is k = 1.7 (M1/2 torr1/2 S)?1. If monomer is assisting termination as was observed for propylene polymerization, then k = 7.8 (M3/2 s)?1. Values of all the rate constants can be higher or lower at other temperatures. Detailed comparisons were made with the results of propylene polymerizations. There are more than four times as many Ti active sites for ethylene polymerization than there are for stereospecific polymerization of propylene; the difference is more than a factor of two for the Ti sites. Certain rate constants are nearly the same for both monomers while others are markedly different. Some of the differences can be explained by stereoelectronic effects.  相似文献   

14.
The reactions of Cl and Br atoms with H2O2 have been studied in the range of 300–350 K using the very-low-pressure-reactor technique. It was found that metathesis to produce HX and HO2 is the only significant process (≤99%). For the reaction of Br k2 (300 K) = 1.3 ± 0.45 × 10?14 and k2 (350 K) = 3.75 ± 1.1 × 10?14 cm3/molecules·s, with an activation energy of 4.6 ± 0.7 kcal/mol. Using an estimated A factor for A2, we find suggesting that a best choice is E2 = 3.9 ± 0.4 kcal/mol. The relation of these values to ΔH (HO2) is discussed.  相似文献   

15.
Various 1,3‐dialkylimidazolium and tetraalkylphosphonium ionic liquids (ILs), including novel ones, have been studied as reaction media for free radical polymerization of methyl methacrylate (MMA), acrylonitrile (AN) and 1‐vinyl‐3‐ethylimidazolium salts (ViEtIm+)Y?. The influence of IL's nature upon the polymer formulation was investigated. The use of different ionic liquids allows not only to obtain the polymers with high molecular weight (PMMA, up to 5,770,000 g/mol; PAN, up to 735,000 g/mol and poly[(ViEtIm+)Y?], up to 1,130,000 g/mol) in high yields, but also to control the polymerization rate and molecular mass. The physicochemical characteristics, including mechanical properties, thermal stability and heat‐resistance of the obtained polymers were studied in order to compare with those of polymers prepared in a traditional media. It was found that elongation, tensile modulus and strength of PAN, which was synthesized in ionic liquid, are reliatively higher. The influence of IL's nature upon their ionic conductivity and the formation of conductive polymers from molten‐salt‐type vinyl monomers was investigated. Molecular design of the polymers simultaneously with the influence of IL's nature in order to achieve higher ionic conductivity is discussed. Flexible, transparent polymer films, obtained in different ways, show relatively high ionic conductivity (of about 10?5 S cm?1 at 20°C). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
The equilibrium constant for the reaction has been determined between 331 and 480°K using a variable-temperature flowing afterglow. These data give ΔH°(1) = -1.03 ± 0.21 kcal/mol and ΔS°(1) = —4.6 ± 1.0 cal/mol°K. When combined with the known thermochemical values for HBr, Br?, and HNO3, this yields ΔH(NO3?) = -74.81 ± 0.54 kcal/mol and S(NO3?) = 59.4 cal/mol·°K. In addition ΔHn-1,n and ΔSn-1,nfor the gas-phase reactions were determined for n = 2 and 3. The implications of these measurements to gas-phase negative ion chemistry are discussed.  相似文献   

17.
The present work describes oxidation of ascorbic acid (AA) at octacyanomolybdate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐Mo(CN) film modified glassy carbon electrode in 0.1 M H2SO4. The modified electrode has been successfully prepared by means of electrostatically trapping Mo(CN) mediator in the cationic film of glutaraldehyde‐cross‐linked poly‐L ‐lysine. The dependence of peak current of modified electrode in pure supporting indicates that the charge transfer in the film was a mixed process at low scan rates (5 to 200 mV s?1), and kinetically restrained at higher scan rates (200 to 1000 mV s?1). Cyclic voltammetry and rotating disk electrode (RDE) techniques are used to investigate the electrocatalytic oxidation of ascorbic acid and compared with its oxidation at bare and undoped PLL‐GA film coated electrodes. The rate constant of catalytic reaction k obtained from RDE analysis was found to be 9.5×105 cm3 mol?1 s?1. The analytical determination of ascorbic acid has been carried out using RDE technique over the physiological interest of ascorbic acid concentrations with a sensitivity of 75 μA mM?1. Amperometric estimation of AA in stirred solution shows a sensitivity of 15 μA mM?1 over the linear concentration range between 50 and 1200 μM. Interestingly, PLL‐GA‐Mo(CN) modified electrode facilitated the oxidation of ascorbic acid but not responded to other electroactive biomolecules such as dopamine, uric acid, NADH, glucose. This unique feature of PLL‐GA‐Mo(CN) modified electrode allowed for the development of a highly selective method for the determination of ascorbic acid in the presence of interferents.  相似文献   

18.
The title cation ( = Ni2L) is formed in a variety of reactions (Schemes 1 and 2) in systems containing Ni2+ and (2-thiolatoethyl)-diphenylphosphine (= L?) in the absence of coordinating anions at Ni2+/L? ratios > 0.5 in apolar or moderately polar media. Solid [Ni2L3]CIO4 and [Ni2L3]BPh4 have been isolated. Job's plots confirm the Ni2L- stoichiometry in solution. 31P-NMR data are consistent with ≥ 97% Ni2L (vs. ? 3% of hypothetical Ni3L) at equilibrium and support the suggested configuration (Fig. 2). The equilibrium between NiL2 + NiL2Br2 and Ni2L + Br? varies with the solvent composition in CH23Cl2/EtOH mixtures. The rate of formation of Ni2L2Br2 from Ni2L and bromide (in high excess) in CH2Cl2 is first-order in [Ni2L]tot but depends on the ratio [Bu4NBr]tot/[Ni2L3 · ClO4]tot, even at a high excess of bromide. This is interpreted by efficient competition in ion-aggregate formation between the small perchlorate concentration introduced as the counterion of Ni2L, and the large excess of bromide.  相似文献   

19.
The ligands (L) bis (2-pyridyl) methane (BPM) and 6-methyl-bis (2-pyridyl)methane (MBPM) form the three complexes CuL2+, CuL, and Cu2L2H with Cu2+. Stability constants are log K1 = 6.23 ± 0.06, log K2 = 4.83 ± 0.01, and log K (Cu2L2H + 2H2+ ? 2 CuL2+) = ?10.99 ± 0.03 for BPM and 4.56 ± 0.02, 2.64 ± 0.02, and ?11.17 ± 0.03 for MBPM, respectively. In the presence of catalytic amounts of Cu2+, the ligands are oxygenated to the corresponding ketones at room temperature and neutral pH. With BPM and 2,4,6-trimethylpyridine (TMP) as the substrate and the buffer base, respectively, the kinetics of the oxygenation can be described by the rate law with k1 = (5.9 ± 0.2) · 10?13 mol l?1 s?1, k2 = (4.0 ± 0.6) · 10?4 mol?1 ls?1, k3 = (1.1 ± 0.1) · 10?12 mol l?1 s?1, and k4 = (9 ± 2) · 10?14 mol l?1 s?1.  相似文献   

20.
Characterization of [C4H5O]+ ions in the gas phase using their collisional activation spectra shows that the four C3H5\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O isomers CH2?C(CH3)\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O, CH2?CHCH2\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O, CH3CH?CH\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O and ?? \documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O are stable for ≥ 10?5 s. It is concluded further from the characteristic shapes for the unimolecular loss of CO from C3H5\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O ions generated from a series of precursor molecules that the CH2?CH(CH3)\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O- and CH2?CHCH2\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O-type ions dissociate over different potential surfaces to yield [allyl]+ and [2-propenyl]+ [C3H5]+ product ions respectively. Cyclopropyl carbonyl-type ions lose CO with a large kinetic energy release, which points to ring opening in the transition state, whereas this loss from CH3CH?CH\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O-type ions is proposed to occur via a rate determining 1,2-H shift to yield 2-propenyl cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号