首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid diagnosis of bacterial infection is important for patient management and appropriate therapy during the early phase of bacteria‐induced disease. Among the existing techniques for identifying microbial, CE‐SSCP combined with 16S ribosomal RNA gene‐specific PCR has the benefits of excellent sensitivity, resolution, and reproducibility. However, even though CE‐SSCP can separate PCR products with high‐resolution, multiplex detection and quantification are complicated by primer‐dimer formation and non‐specific amplification. Here, we describe a novel technique for multiplex detection and quantification of pathogens by template‐tagging followed by multiplex asymmetric PCR and subsequent CE‐SSCP. More specifically, we reverse transcribed 16S ribosomal RNAs from seven septicemia‐inducing pathogens, tagged the templates with common end sequences, and amplified them using common primers. The resulting amplicons could be successfully separated by CE‐SSCP and quantified by comparison to an internal standard. This method yielded results that illustrate the potential of this system for diagnosing infectious disease.  相似文献   

2.
Two single nucleotide polymorphisms (SNPs) of 5,10-methylenetetrahydrofolate reductase (MTHFR) gene, A1298C and C677T, were widely considered to be related with various neoplasia disorders. We established a simple and effective capillary electrophoresis (CE) method for detection of two SNPs in MTHFR gene simultaneously. DNA samples were amplified by multiplex PCR with universal fluorescence-labeled primer and analyzed by single-strand conformation polymorphism (SSCP)-CE method. The CE method was performed using 1.5% hydroxyethyl cellulose in 1× TBE buffer containing 1 M urea. The PCR products after SSCP procedure were electrokinetically injected at −10 kV, 30 s. Separation voltage was −6 kV and the temperature was set at 20 °C. The optimal SSCP-CE method was applied to detect two polymorphisms in MTHFR gene of acute lymphoblastic leukemia (ALL) and attention-deficit/hyperactivity disorder (ADHD) patients. Genotyping results were evaluated in terms of relationships between outcomes for ADHD patients after ALL chemotherapy and ALL disease. The SSCP-CE method and multiplex PCR with universal fluorescence primer were used as the fast technique for screening two SNPs in MTHFR gene, A1298C and C677T. The genotyping data were coincident with DNA sequencing. This SSCP-CE method was found feasible for detecting mutation of MTHFR gene in populations.  相似文献   

3.
In this study, a genotyping CGE method was established for analysis of Duchenne muscular dystrophy (DMD) gene deletions and duplications in exon 44–55. A total of 12 DMD exons (exon 44–55) and 2 internal standard gene fragments were simultaneously amplified by using a universal multiplex PCR (UMPCR) and determined by CGE. The conditions of UMPCR and CGE were optimized, including the kinds of polymerase, temperatures in UMPCR, separation matrix, separation temperature, and voltage. Finally, the separation was performed by 1.2% poly(ethylene oxide) in 1× TBE buffer at ?6 kV and 25°C. After validation, our results showed the peak patterns for differentiation of genetic deletion or duplication in 27 DMD patients and normal subjects, according to the peak height ratios by comparison of two internal standard peaks. Among the 27 subjects, 23 cases are deletion type and four are duplication type. The data of two patients analyzed by this CGE‐PCR method were different from that of multiplex ligation dependent probe amplification method, and the sequencing results demonstrated that our results were correct. This UMPCR‐CGE method was considered better than the multiplex ligation dependent probe amplification method. Furthermore, this method can be used for eugenics in clinical applications.  相似文献   

4.
Single nucleotide polymorphisms (SNPs) are one of the most common markers in mammals. Rapid, accurate, and multiplex typing of SNPs is critical for subsequent biological and genetic research. In this study, we have developed a novel method for multiplex genotyping SNPs in mice. The method involves allele‐specific PCR amplification of genomic DNA with two stem‐loop primers accompanied by two different universal fluorescent primers. Blue and green fluorescent signals were conveniently detected on a DNA sequencer. We verified four SNPs of 65 mice based on the novel method, and it is well suited for multiplex genotyping as it requires only one reaction per sample in a single tube with multiplex PCR. The use of universal fluorescent primers greatly reduces the cost of designing different fluorescent probes for each SNP. Therefore, this method can be applied to many biological and genetic studies, such as multiple candidate gene testing, genome‐wide association study, pharmacogenetics, and medical diagnostics.  相似文献   

5.
《Electrophoresis》2018,39(11):1382-1389
A sheath‐flow interface is the most common ionization technique in CE‐ESI‐MS. However, this interface dilutes the analytes with the sheath liquid and decreases the sensitivity. In this study, we developed a sheathless CE‐MS interface to improve sensitivity. The interface was fabricated by making a small crack approximately 2 cm from the end of a capillary column fixed on a plastic plate, and then covering the crack with a dialysis membrane to prevent metabolite loss during separation. A voltage for CE separation was applied between the capillary inlet and the buffer reservoir. Under optimum conditions, 52 cationic metabolite standards were separated and selectively detected using MS. With a pressure injection of 5 kPa for 15 s (ca. 1.4 nL), the detection limits for the tested compounds were between 0.06 and 1.7 μmol/L (S/N = 3). The method was applied to analysis of cationic metabolites extracted from a small number (12 000) of cancer cells, and the number of peaks detected was about 2.5 times higher than when using conventional sheath‐flow CE‐MS. Because the interface is easy to construct, it is cost‐effective and can be adapted to any commercially available capillaries. This method is a powerful new tool for highly sensitive CE‐MS‐based metabolomic analysis.  相似文献   

6.
Accuracy, simplicity, and cost‐effectiveness are the most important criteria for a genotyping method for SNPs compatible with clinical use. One method developed for SNP genotyping, ligase‐based discrimination, is considered the simplest for clinical diagnosis. However, multiplex assays using this method are limited by the detection method. Although CE has been introduced as an alternative to error prone microarray‐based detection, the design process and multiplex assay procedure are complicated because of the DNA size‐dependent separation principle. In this study, we developed a simple and accurate multiplex genotyping method using reaction condition‐optimized ligation and high‐resolution CE‐based SSCP. With this high‐resolution CE‐SSCP system, we are able to use similar‐sized probes, thereby eliminating the complex probe design step and simplifying the optimization process. We found that this method could accurately discriminate single‐base mismatches in SNPs of the tp53 gene, used as targets for multiplex detection.  相似文献   

7.
Li Y  Guo SJ  Shao N  Tu S  Xu M  Ren ZR  Ling X  Wang GQ  Lin ZX  Tao SC 《Lab on a chip》2011,11(21):3609-3618
Both basic research and clinical medicine have urgent demands for highly efficient strategies to simultaneously identify many different DNA sequences within a single tube. Effective and simultaneous amplification of multiple target sequences is a prerequisite for any successful multiple nucleic acid detection method. Multiplex PCR is one of the best choices for this purpose. However, due to the intrinsic interference and competition among primer pairs in the same tube, multiple rounds of highly empirical optimization procedures are usually required to establish a successful multiplex PCR reaction. To address this challenge, we report here a universal multiplex PCR strategy that is capable of over 100-plex amplification using a specially designed microarray in which hydrophilic microwells are patterned on a hydrophobic chip. On such an array, primer pairs tagged with a universal sequence are physically separated in individual hydrophilic microwells on an otherwise hydrophobic chip, enabling many unique PCR reactions to be proceeded simultaneously during the first step of the procedure. The PCR products are then isolated and further amplified from the universal sequences, producing a sufficient amount of material for analysis by conventional gel electrophoresis or DNA microarray technology. This strategy is abbreviated as "MPH&HPM" for "Multiplex PCR on a Hydrophobically and Hydrophilically Patterned Microarray". The feasibility of this method is first demonstrated by a multiplex PCR reaction for the simultaneous detection of eleven pneumonia-causing pathogens. Further, we demonstrate the power of this strategy with a highly successful 116-plex PCR reaction that required only little prior optimization. The effectiveness of the MPH&HPM strategy with clinical samples is then illustrated with the detection of deleted exons of the Duchenne Muscular Dystrophy (DMD) gene, the results are in excellent agreement with the clinical records. Because of its generality, simplicity, flexibility, specificity and capacity of more than 100-plex amplification, the MPH&HPM strategy should have broad applications in both laboratory research and clinical applications when multiplex nucleic acid analysis is required.  相似文献   

8.
A multiplex polymerase chain reaction (PCR) detection method for the simultaneous detection of animal-derived components from deer, cow, sheep, pig and horse in edible meat was established, and a multiplex PCR detection kit for the rapid detection of animal-derived components was developed. According to the mitochondrial cytochrome b (Cyt b) gene of bovine species, sheep species, pig species and horse species and the mitochondrial cytochrome c oxidase subunit I (COX 1) gene of sika deer and red deer as the target gene sequences of primers, the specific primers of five different species were designed, the PCR system was optimized, and the multiplex PCR identification method of five animal-derived components was established. The minimum detection amount was determined by sensitivity test. The results showed that five meat specific amplification bands could be found at the same time in the same reaction system, including 173 bp fragment for venison, 148 bp for beef, 261 bp for pork, 100 bp for mutton and 424 bp for horse, indicating that the method is specific and stable. The minimum detection limit by this method was 1 ng/μL, showing a high sensitivity. According to the different sites in different areas of animal mitochondrial genes, a multiplex PCR detection method was established and a detection kit was developed, and the rapid, sensitive, stable and high-throughput detection of five animal-derived components and adulterated animal components in edible meat can be realized by using the kit.  相似文献   

9.
The sequential deletion method is commonly applied to locate the functional domain of a protein. Unfortunately, manually designing primers for multiplex polymerase chain reaction (PCR) is a labor-intensive task. In order to speed up the experimental procedure and to improve the efficiency of producing PCR products, this paper proposes a multiplex PCR primers (MPCRPs) designer to design multiple forward primers with a single 3′-UTR reverse primer for extracting various N-terminal truncated mutants to quickly locate the functional domain of a cDNA sequence. Several factors, including melting temperature, primer length, GC content, internal self-complement, cross-dimerization, terminal limitation, and specificity, are used as the criteria for designing primers. This study obtains a near-optimal solution of primer sets that can be placed in as few test tubes as possible for one multiplex PCR experiment.ResultsHomo sapiens ribosomal protein L5, Homo sapiens xylosyltransferase I, and Bacteriophage T4 gene product 11 were used as test examples to verify efficacy of the proposed algorithm. In addition, the designed primers of Homo sapiens ribosomal protein L5 cDNA were applied in multiplex PCR experiments. A total of 48 forward primers and one reverse primer were designed and used to duplicate N-terminal truncated mutants of different lengths from the protein. The primers were classified into eight tube groups (i.e., test tubes) held within the same temperature range (53–57 °C), and the validity of the PCR products were verified using polyacrylamide gel electrophoresis (PAGE) with the functional domain correctly located. A software implementation of the proposed algorithm useful in assisting the researcher to design primers for multiplex PCR experiments was developed and available upon request.  相似文献   

10.
《Electrophoresis》2017,38(16):2069-2074
The interinstrumental transfer of a short‐end CE method was studied. A model separation of the hexameric forms of niobium, tantalum, and their substituted ions (Nb6−xTax with 0 ≤ x  ≤ 6) was selected as test case. The method was first optimized on a Beckman instrument and in a second step transferred to an Agilent instrument. The transfer needed updated guidelines that tackled differences in effective capillary length, 8.5 (Agilent) versus 10 cm (Beckman), because of instrumental different capillary cartridges. Differences in effective length lead to migration time and separation efficiency inequalities, illustrated by a decrease in resolution between the substituted ions. The difference in effective length was overcome by adapting the lift offset parameter of the Agilent instrument. The lift offset default setting is 4 mm and by increasing this parameter both the inlet and outlet lifts are lowered and thus the detection window can be displaced and consequently the effective length was increased. The decrease in effective length difference and the effect on the separation efficiency was investigated and led finally to a restored separation of the substituted ions. The adaptation of the lift offset parameter during short‐end injection methods was added to earlier developed guidelines to facilitate interinstrumental method transfer of CE methods.  相似文献   

11.
《Electrophoresis》2017,38(3-4):513-520
For the development of clinically useful genotyping methods for SNPs, accuracy, simplicity, sensitivity, and cost‐effectiveness are the most important criteria. Among the methods currently being developed for SNP genotyping technology, the ligation‐dependent method is considered the simplest for clinical diagnosis. However, sensitivity is not guaranteed by the ligation reaction alone, and analysis of multiple targets is limited by the detection method. Although CE is an attractive alternative to error‐prone hybridization‐based detection, the multiplex assay process is complicated because of the size‐based DNA separation principle. In this study, we employed the ligase detection reaction coupled with high‐resolution CE‐SSCP to develop an accurate, sensitive, and simple multiplex genotyping method. Ligase detection reaction could amplify ligated products through recurrence of denaturation and ligation reaction, and SSCP could separate these products according to each different structure conformation without size variation. Thus, simple and sensitive SNP analysis can be performed using this method involving the use of similar‐sized probes, without complex probe design steps. We found that this method could not only accurately discriminate base mismatches but also quantitatively detect 37 SNPs of the tp53 gene, which are used as targets in multiplex analysis, using three‐color fluorescence‐labeled probes.  相似文献   

12.
We have developed a capillary electrophoresis (CE) method with universal fluorescent multiplex PCR to simultaneously detect the SMN1 and SMN2 genes in exons 7 and 8. Spinal muscular atrophy (SMA) is a very frequent inherited disease caused by the absence of the SMN1 gene in approximately 94% of patients. Those patients have deletion of the SMN1 gene or gene conversion between SMN1 and SMN2. However, most methods only focus on the analysis of whole gene deletion, and ignore gene conversion. Simultaneous quantification of SMN1 and SMN2 in exons 7 and 8 is a good strategy for estimating SMN1 deletion or SMN1 to SMN2 gene conversion. This study established a CE separation allowing differentiation of all copy ratios of SMN1 to SMN2 in exons 7 and 8. Among 212 detected individuals, there were 23 SMA patients, 45 carriers, and 144 normal subjects. Three individuals had different ratios of SMN1 to SMN2 in two exons, including an SMA patient having two SMN2 copies in exon 7 but one SMN1 copy in exon 8. This method could provide more information about SMN1 deletion or SMN1 to SMN2 gene conversion for SMA genotyping and diagnosis.  相似文献   

13.
The capillary electrophoresis (CE) technology is commonly used for fragment length separation of markers in forensic DNA analysis. In this study, pyrosequencing technology was used as an alternative and rapid tool for the analysis of biallelic InDel (insertion/deletion) markers for individual identification. The DNA typing is based on a subset of the InDel markers that are included in the Investigator® DIPplex Kit, which are sequenced in a multiplex pyrosequencing analysis. To facilitate the analysis of degraded DNA, the polymerase chain reaction (PCR) fragments were kept short in the primer design. Samples from individuals of Swedish origin were genotyped using the pyrosequencing strategy and analysis of the Investigator® DIPplex markers with CE. A comparison between the pyrosequencing and CE data revealed concordant results demonstrating a robust and correct genotyping by pyrosequencing. Using optimal marker combination and a directed dispensation strategy, five markers could be multiplexed and analyzed simultaneously. In this proof‐of‐principle study, we demonstrate that multiplex InDel pyrosequencing analysis is possible. However, further studies on degraded samples, lower DNA quantities, and mixtures will be required to fully optimize InDel analysis by pyrosequencing for forensic applications. Overall, although CE analysis is implemented in most forensic laboratories, multiplex InDel pyrosequencing offers a cost‐effective alternative for some applications.  相似文献   

14.
A previously developed multiplex assay with 44 individual identification SNPs was expanded to a 55plex assay. Fifty‐four highly informative SNPs and an amelogenin sex marker were amplified in one PCR reaction and then detected with two SNaPshot reactions using CE. PCR primers for four loci, 28 single‐base extension primers, and the reaction conditions were altered to improve the robustness of the method. A detailed approach for allele calling was developed to guide analysis of the electropherogram. One hundred and eighty unrelated individuals and 100 father‐child‐mother trios of the Han population in Hebei, China were analyzed. No mutation was found in the SNP loci. The combined mean match probability and cumulative probability of exclusion were 1.327 × 10?22 and 0.999932, respectively. Analysis of the 54 SNPs and 26 STRs (included in the AmpFLSTR Identifiler and Investigator HDplex kits) showed no significant linkage disequilibriums. Our research shows that the expanded SNP multiplex assay is an easily performed and valuable method to supplement STR analysis.  相似文献   

15.
The DNA fragment detection focusing technique has further enhanced the sensitivity and information of DNA targets. The DNA fragment detection method was established by capillary electrophoresis with laser‐induced fluorescence detection and restriction endonuclease chromatographic fingerprinting (CE‐LIF‐REF) in our experiment. The silica capillary column was coated with short linear polyarclarylamide (SLPA) using nongel sieving technology. The excision product of various restricted enzymes of DNA fragments was obtained by REF with the molecular biology software Primer Premier 5. The PBR322/BsuRI DNA marker was used to establish the optimization method. The markers were focused electrophoretically and detected by CE‐LIF. The results demonstrate that the CE‐LIF‐REF with SLPA can improve separation, sensitivity and speed of analysis. This technique may be applied to analysis of the excision product of various restricted enzymes of prokaryotic plasmid (pIRES2), eukaryote plasmid (pcDNA3.1) and the PCR product of codon 248 region of gastric cancer tissue. The results suggest that this method could very sensitively separate the excision products of various restricted enzymes at a much better resolution than the traditional agarose electrophoresis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
We evaluated the efficacy of PCR-RFLP, competitive multiplex PCR, and a commercially available system of multiplex ligation-dependent probe amplification (MLPA) for the determination of deletion and duplication genotypes of the PMP22 gene. We compared the methods for efficiency, sensitivity, and specificity. We determined the gene dosage of the PMP22 gene via PCR-RFLP, competitive multiplex PCR, and MLPA. To demonstrate the sensitivity and accuracy of these three methods, a total of 185 samples from 42 patients with hereditary neuropathy with liability to pressure palsies (HNPP), 57 patients with Charcot-Marie-Tooth disease type 1A (CMT1A), and 86 unaffected individuals, were analyzed. Molecular diagnosis by PCR-RFLP was performed on all 185 samples; 24 HNPP deletions and 33 CMT1A duplications were identified. In contrast, 25 HNPP deletions and 38 CMT1A duplications were identified correctly using competitive multiplex PCR and MLPA. Six samples were incorrectly identified by PCR-RFLP (one HNPP deletion and five CMT1A duplications). Competitive multiplex PCR and MLPA demonstrated reliability and relative speed compared to PCR-RFLP; they were superior to PCR-RFLP for gene dosage quantification. Multiplex PCR and MLPA should be the methods of choice for detection of deletion and duplication genotypes in molecular genetic diagnoses.  相似文献   

17.
Fritless SPE on‐line coupled to CE with UV and MS detection (SPE‐CE‐UV and SPE‐CE‐MS) was evaluated for the analysis of opioid peptides. A microcartridge of 150 μm id was packed with a C18 sorbent (particle size > 50 μm), which was retained between a short inlet capillary and a separation capillary (50 μm id). Several experimental parameters were optimized by SPE‐CE‐UV using solutions of dynorphin A (DynA), endomorphin 1 (End1), and methionine‐enkephaline (Met). A microcartridge length of 4 mm was selected, sample was loaded for 10 min at 930 mbar and the retained peptides were eluted with 67 nL of an acidic hydro‐organic solution. Using SPE‐CE‐MS, peak area and migration time repeatabilities for the three opioid peptides were 12–27% and 4–5%, respectively. SPE recovery was lower for the less hydrophobic DynA (22%) than for End1 (66%) and Met (78%) and linearity was satisfactory in all cases between 5 and 60 ng/mL. The LODs varied between 0.5 and 1.0 ng/mL which represent an enhancement of two orders of magnitude when compared with CE‐MS. Cerebrospinal fluid (CSF) samples spiked with the opioid peptides were analyzed to demonstrate the applicability to biological samples. Peak area and migration time repeatabilities were similar to the standard solutions and the opioid peptides could be detected down to 1.0 ng/mL.  相似文献   

18.
A rapid method for the simultaneous determination of free glycerol (FG) and total glycerol (TG) in biodiesel by CE using a short‐end multiple injection (SE/MI) configuration system is described. The sample preparation for FG involves the extraction of glycerol with water and for TG a saponification reaction is carried out followed by extraction as in the case of FG. The glycerol extracted in both cases is submitted to periodate oxidation and the iodate ions formed are measured on a CE‐SE/MI system. The relevance of this study lies in the fact that no analytical procedure has been previously reported for the determination of TG (or of FG and TG simultaneously) by CE. The optimum conditions for the saponification/extraction process were 1.25% KOH and 25°C, with a time of only 5 min, and biodiesel mass in the range of 50.0–200.0 mg can be used. Multiple injections were performed hydrodynamically with negative pressure as follows: 50 mbar/3s (FG sample); 50 mbar/6s (electrolyte spacer); 50 mbar/3s (TG sample). The linear range obtained was 1.55–46.5 mg/L with R2> 0.99. The LOD and LOQ were 0.16 mg/L and 0.47 mg/L, respectively for TG. The method provides acceptable throughput for application in quality control and monitoring biodiesel synthesis process. In addition, it offers simple sample preparation (saponification process), it can be applied to a variety biodiesel samples (soybean, castor, and waste cooking oils) and it can be used for the determination of two key parameters related to the biodiesel quality with a fast separation (less than 30 s) using an optimized CE‐SE/MI system.  相似文献   

19.
Point mutations of the K-ras gene located in codons 12 and 13 cause poor responses to the anti-epidermal growth factor receptor (anti-EGFR) therapy of colorectal cancer (CRC) patients. Besides, mutations of K-ras gene have also been proven to play an important role in human tumor progression. We established a simple and effective capillary electrophoresis (CE) method for simultaneous point mutation detection in codons 12 and 13 of K-ras gene. We combined one universal fluorescence-based nonhuman-sequence primer and two fragment-oriented primers in one tube, and performed this two-in-one polymerase chain reaction (PCR). PCR fragments included wild type and seven point mutations at codons 12 and 13 of K-ras gene. The amplicons were analyzed by single-strand conformation polymorphism (SSCP)-CE method. The CE analysis was performed by using a 1× Tris–borate–EDTA (TBE) buffer containing 1.5% (w/v) hydroxyethylcellulose (HEC) (MW 250 000) under reverse polarity with 15 °C and 30 °C. Ninety colorectal cancer patients were blindly genotyped using this developed method. The results showed good agreement with those of DNA sequencing method. The SSCP-CE was feasible for mutation screening of K-ras gene in populations.  相似文献   

20.
Duchenne muscular dystrophy (DMD) is a fatal muscle‐wasting disease arising from mutations in the dystrophin gene. Upregulation of utrophin to compensate for the missing dystrophin offers a potential therapy independent of patient genotype. The first‐in‐class utrophin modulator ezutromid/SMT C1100 was developed from a phenotypic screen through to a Phase 2 clinical trial. Promising efficacy and evidence of target engagement was observed in DMD patients after 24 weeks of treatment, however trial endpoints were not met after 48 weeks. The objective of this study was to understand the mechanism of action of ezutromid which could explain the lack of sustained efficacy and help development of new generations of utrophin modulators. Using chemical proteomics and phenotypic profiling we show that the aryl hydrocarbon receptor (AhR) is a target of ezutromid. Several lines of evidence demonstrate that ezutromid binds AhR with an apparent KD of 50 nm  and behaves as an AhR antagonist. Furthermore, other reported AhR antagonists also upregulate utrophin, showing that this pathway, which is currently being explored in other clinical applications including oncology and rheumatoid arthritis, could also be exploited in future DMD therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号