共查询到20条相似文献,搜索用时 0 毫秒
1.
The nanocomposites of Ag nanoparticles supported on Cu2O were prepared and used for fabricating a novel nonenzymatic H2O2 sensor. The morphology and composition of the nanocomposites were characterized using the scanning electron microscope (SEM), transmission electron microscope (TEM), energy‐dispersive X‐ray spectrum (EDX) and X‐ray diffraction spectrum (XRD). The electrochemical investigations indicate that the sensor possesses an excellent performance toward H2O2. The linear range is estimated to be from 2.0 μM to 13.0 mM with a sensitivity of 88.9 μA mM?1 cm?2, a response time of 3 s and a low detection limit of 0.7 μM at a signal‐to‐noise ratio of 3. Additionally, the sensor exhibits good anti‐interference. 相似文献
2.
A nonenzymatic amperometric electrochemical sensor for the detection of hydrogen peroxide (H2O2) was fabricated based on highly dense silver nanowires (Ag NWs) and chitosan (CS) film. Ag NWs were synthesized by a poly(vinyl pyrrolidone) (PVP)‐mediated polyol process in the presence of manganese chloride (MnCl2), and were characterized by scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDS), and X‐ray diffraction (XRD). Under the optimal conditions, the proposed nonenzymatic sensor exhibited good electrocatalytic activity towards the reduction of H2O2, and could detect H2O2 in the linear range of 0.008–1.35 mM, with a detection limit of 2 µM (S/N=3). 相似文献
3.
We describe a simple method for preparing Au‐TiO2/graphene (GR) nanocomposite by deposition of Au nanoparticles (NPs) on TiO2/GR substrates. The as‐prepared Au‐TiO2/GR was characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The presence of Au NPs on TiO2/GR surface remarkably improves the electrocatalytic activity towards the oxidation of hydrogen peroxide (H2O2) and β‐nicotinamide adenine dinucleotide (NADH). The Au‐TiO2/GR modified glassy carbon (GC) electrode exhibits good amperometric response to H2O2 and NADH, with linear range from 10 to 200 µM and 10 to 240 µM, and detection limit of 0.7 and 0.2 µM, respectively. 相似文献
4.
《Electroanalysis》2017,29(6):1518-1523
A sensitive and selective amperometric H2O2 biosensor was obtained by utilizing the electrodeposition of Pt flowers on iron oxide‐reduced graphene oxide (Fe3O4/rGO) nanocomposite modified glassy carbon electrode (GCE). The morphology of Fe3O4/rGO and Pt/Fe3O4/rGO was characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. The step‐wise modification and the electrochemical characteristics of the resulting biosensor were characterized by cyclic voltammetry (CV) and chronoamperometry methods. Thanks to the fast electron transfer at the Pt/Fe3O4/rGO electrode interface, the developed biosensor exhibits a fast and linear amperometric response upon H2O2. The linear range of Pt/Fe3O4/rGO is 0.1∼2.4 mM (R2=0.998), with a sensitivity of 6.875 μA/mM and a detection limit of 1.58 μM (S/N=3). In addition, the prepared biosensor also provides good anti‐interferent ability and long‐term stability due to the favorable biocompatibility of the electrode interface. The proposed sensor will become a reliable and effective tool for monitoring and sensing the H2O2 in complicate environment. 相似文献
5.
6.
A Non‐Enzymatic Hydrogen Peroxide Sensor Based on Gold Nanoparticles/Carbon Nanotube/Self‐Doped Polyaniline Hollow Spheres 下载免费PDF全文
In this study, a novel non‐enzymatic hydrogen peroxide (H2O2) sensor was fabricated based on gold nanoparticles/carbon nanotube/self‐doped polyaniline (AuNPs/CNTs/SPAN) hollow spheres modified glassy carbon electrode (GCE). SPAN was in‐site polymerized on the surface of SiO2 template, then AuNPs and CNTs were decorated by electrostatic absorption via poly(diallyldimethylammonium chloride). After the SiO2 cores were removed, hollow AuNPs/CNTs/SPAN spheres were obtained and characterized by transmission electron microscopy (TEM), field‐emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). The electrochemical catalytic performance of the hollow AuNPs/CNTs/SPAN/GCE for H2O2 detection was evaluated by cyclic voltammetry (CV) and chronoamperometry. Using chronoamperometric method at a constant potential of ?0.1 V (vs. SCE), the H2O2 sensor displays two linear ranges: one from 5 µM to 0.225 mM with a sensitivity of 499.82 µA mM?1 cm?2; another from 0.225 mM to 8.825 mM with a sensitivity of 152.29 µA mM?1 cm?2. The detection limit was estimated as 0.4 µM (signal‐to‐noise ratio of 3). The hollow AuNPs/CNTs/SPAN/GCE also demonstrated excellent stability and selectivity against interferences from other electroactive species. The sensor was further applied to determine H2O2 in disinfectant real samples. 相似文献
7.
A novel non‐enzymatic sensor based on Ag/MnOOH nanocomposites was developed for the detection of hydrogen peroxide (H2O2). The H2O2 sensor was fabricated by immobilizing Ag/MnOOH nanocomposites on a glassy carbon electrode (GCE). The morphology and composition of the sensor surface were characterized using scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscopy and X‐ray diffraction spectroscopy. The electrochemical investigation of the sensor indicates that it possesses an excellent electrocatalytic property for H2O2, and could detect H2O2 in a linear range from 5.0 µM to 12.8 mM with a detection limit of 1.5 µM at a signal‐to‐noise ratio of 3, a response time of 2 s and a sensitivity of 32.57 µA mM?1 cm?2. Additionally, the sensor exhibits good anti‐interference. The good analytical performance, low cost and straightforward preparation method made this novel electrode material promising for the development of effective non‐enzymatic H2O2 sensor. 相似文献
8.
Development of Nonenzymatic Hydrogen Peroxide Sensor Based on Successive Pd‐Ag Electrodeposited Nanoparticles on Glassy Carbon Electrode 下载免费PDF全文
A novel strategy to fabricate hydrogen peroxide (H2O2) sensor was developed by electrodepositing palladium? silver nanoparticles (NPs) on a glassy carbon electrode. The morphology of the modified electrode was characterized by Scanning electron microscopy (SEM). The result of electrochemical experiments showed that such constructed sensor had a favorable catalytic ability, high sensitivity, excellent selectivity towards reduction of hydrogen peroxide (H2O2). The response to H2O2 is linear in the range between 0.30 μM to 2.50 mM, and the detection limit is 0.1 μM (at an S/N of 3). 相似文献
9.
A novel nanocomposite designed by the assembly of the positively charged poly(diallyldimethylammonium chloride) protected gold nanoparticles (PDDA‐GNPs), and the negatively charged multi‐walled carbon nanotubes (MWCNTs) on ITO electrode via electrostatic interaction, was used as a supporting matrix for immobilizing hemoglobin (Hb) to develop a high‐performance hydrogen peroxide (H2O2) biosensor. The cyclic voltammetrys of immobilized Hb showed a pair of well‐defined and quasi‐reversible redox peaks with the formal potential of ‐0.205V (vs. SCE) and the peak‐to‐peak potential separation of 44 mV at a scan rate of 100 mV×s?1 in 0.1 mol×L?1 pH 7.0 PBS. Under the optimized experimental conditions, a linearity range for determination of H2O2 was from 2.0 × 10?6 to 5.2 × 10?4 mol×L?1 with a correlation coefficient of 0.9994 (n = 37) and a detection limit of 8.4 × 10?7 mol×L?1. The biosensor displayed excellent electrochemical and electrocatalytic response to the reduction of H2O2, high sensitivity, long‐term stability, good bioactivity and selectivity. 相似文献
10.
11.
《Electroanalysis》2005,17(22):2068-2073
A new cathodic scheme for hydrogen peroxide (H2O2) measurement by Fe3O4‐based chemical sensor was described. The unique characteristic of electrocatalytic property was firstly investigated by voltammetry. And then the amperometric response of H2O2 was measured at ?0.2 V (vs. Ag/AgCl) by Fe3O4 modified glassy carbon rotating disk electrode. The kinetic parameter was also calculated from Koutecky‐Levich plot, and the value was 6.4×10?4 cm s?1 in pH 3 citrate buffer. In order to benefit the possible biomedical applications, Fe3O4/chitosan modified electrode was also investigated in this experiment. There were several characteristic enhancements by the coated chitosan thin film for H2O2 sensor. The calibration curves were found to be linear up to 4.0 and 5.0 mM (r=0.999) in pH 3 and 7 with the detection limits of 7.6 and 7.4 μM L?1 (S/N=3). The stability was evaluated by the results of half‐life time (t50%) for 9 months at room temperature and 24 months at 4 °C. 相似文献
12.
Ni(OH)2 nanoflowers were synthesized by a simple and energy‐efficient wet chemistry method. The product was characterized by scanning electron microscopy (SEM) and X‐ray powder diffraction (XRD). Then Ni(OH)2 nanoflowers attached multi‐walled carbon nanotubes (MWCNTs) modified glassy carbon electrodes (GCE) were proposed (MWCNTs/Ni(OH)2/GCE) to use as electrochemical sensor to detect hydrogen peroxide. The results showed that the synergistic effect was obtained on the MWCNTs/Ni(OH)2/GCE whose sensitivity was better than that of Ni(OH)2/GCE. The linear range is from 0.2 to 22 mmol/L, the detection limit is 0.066 mmol/L, and the response time is <5 s. Satisfyingly, the MWCNTs/Ni(OH)2/GCE was not only successfully employed to eliminate the interferences from uric acid (UA), acid ascorbic (AA), dopamine (DA), glucose (GO) but also NO2? during the detection. The MWCNTs/Ni(OH)2/GCE allows highly sensitive, excellently selective and fast amperometric sensing of hydrogen peroxide and thus is promising for the future development of hydrogen peroxide sensors. 相似文献
13.
The poly(m‐toluidine) film was prepared by using the repeated potential cycling technique in an acidic solution at the surface of carbon paste electrode. Then transition metal ions of Ni(II) were incorporated to the polymer by immersion of the modified electrode in a 0.2 M NiSO4, also the electrochemical characterization of this modified electrode exhibits stable redox behavior of the Ni(III)/Ni(II) couple. The electrocatalytic ability of Ni(II)/poly(m‐toluidine)/modified carbon paste electrode (Ni/PMT/MCPE) was demonstrated by electrocatalytic oxidation of hydrogen peroxide with cyclic voltammetry and chronoamperometry methods in the alkaline solution. The effects of scan rate and hydrogen peroxide concentration on the anodic peak height of hydrogen peroxide oxidation were also investigated. The catalytic oxidation peak current showed two linear ranges with different slopes dependent on the hydrogen peroxide concentration and the lower detection limit was 6.5 μM (S/N=3). The catalytic reaction rate constant, (kh), was calculated 5.5×102 M?1 s?1 by the data of chronoamperometry. This modified electrode has many advantages such as simple preparation procedure, good reproducibility and high catalytic activity toward the hydrogen peroxide oxidation. This method was also applied as a simple method for routine control and can be employed directly without any pretreatment or separation for analysis cosmetics products. 相似文献
14.
采用电化学法将钯纳米粒子(PdNPs)沉积在第四代聚酰胺-胺树状大分子(G4.0 PAMAM)功能化碳纳米管(MWCNTs)复合材料(G4.0-MWCNTs)修饰的玻碳电极表面,构建了一种新型过氧化氢(H2O2)传感器。采用场发射扫描电镜、循环伏安法和电化学阻抗谱对修饰电极进行表征,结果表明,大量高分散的PdNPs沉积在G4.0-MWCNTs修饰的电极上,修饰电极对H2 O2还原具有优异的电催化性能。在优化条件下,H2 O2浓度在1.0×10-9~1.0×10-3 mol/L范围内与电流响应呈线性关系,检出限为3×10-10 mol/L (S/N=3),测定血清实样加标回收率在96.7%~103.1%之间。 相似文献
15.
The third generation amperometric biosensor for the determination of hydrogen peroxide (H2O2) has been described. For the fabrication of biosensor, o-aminobenzoic acid (oABA) was first electropolymerized on the surface of platinum (Pt) electrode as an electrostatic repulsion layer to reject interferences. Horseradish peroxidase (HRP) absorbed by nano-scaled particulate gold (nano-Au) was immobilized on the electrode modified with polymerized o-aminobenzoic acid (poABA) with L-cysteine as a linker to prepare a biosensor for the detection of H2O2. Amperometric detection of H2O2 was realized at a potential of +20 mV versus SCE. The resulting biosensor exhibited fast response, excellent reproducibility and sensibility, expanded linear range and low interferences. Temperature and pH dependence and stability of the sensor were investigated. The optimal sensor gave a linear response in the range of 2.99×10^-6 to 3.55×10^-3 mol·L^-1 to H2O2 with a sensibility of 0.0177 A·L^-1·mol^-1 and a detection limit (S/N = 3) of 4.3×10^-7 mol·L^-1. The biosensor demonstrated a 95% response within less than 10 s. 相似文献
16.
《Electroanalysis》2004,16(9):736-740
A new enzyme‐based amperometric biosensor for hydrogen peroxide was developed relying on the efficient immobilization of horseradish peroxidase (HRP) to a nano‐scaled particulate gold (nano‐Au) film modified glassy carbon electrode (GC). The nano‐Au film was obtained by a chitosan film which was first formed on the surface of GC. The high affinity of chitosan for nano‐Au associated with its amino groups resulted in the formation of nano‐Au film on the surface of GC. The film formed served as an intermediator to retain high efficient and stable immobilization of the enzyme. H2O2 was detected using hydroquinone as an electron mediator to transfer electrons between the electrode and HRP. The HRP immobilized on nano‐Au film maintained excellent electrocatalytical activity to the reduction of H2O2. The experimental parameters such as the operating potential of the working electrode, mediator concentration and pH of background electrolyte were optimized for best analytical performance of amperometry. The linear range of detection for H2O2 is from 6.1×10?6 to 1.8×10?3 mol L?1 with a detection limit of 6.1 μmol L?1 based on signal/noise=3. The proposed HRP enzyme sensor has the features of high sensitivity (0.25 Almol?1cm?2), fast response time (t90%≤10 s) and a long‐term stability (>1 month). As an extension, glucose oxidase (GOD) was chemically bound to HRP‐modified electrode. A GOD/HRP bienzyme‐modified electrode formed in this way can be applied to the determination of glucose with satisfactory performance. 相似文献
17.
Abdollah Noorbakhsh Mohmmad Khakpoor Mohammad Rafieniya Ensiyeh Sharifi Mohammad Mehrasa 《Electroanalysis》2017,29(4):1113-1123
The present study describes a novel and very sensitive electrochemical assay for determination of hydrogen peroxide (H2O2) based on synergistic effects of reduced graphene oxide‐ magnetic iron oxide nanocomposite (rGO‐Fe3O4) and celestine blue (CB) for electrochemical reduction of H2O2. rGO‐Fe3O4 nanocomposite was synthesized and characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X‐ray diffraction (XRD), electrochemical impedance spectroscopy and cyclic voltammetry. Chitosan (Chit) was used for immobilization of amino‐terminated single‐stranded DNA (ss‐DNA) molecules via a glutaraldehyde (GA) to the surface of rGO‐Fe3O4. The MTT (3‐(4,5‐Dim ethylt hiazol‐2‐yl)‐2,5‐diphenylt etrazolium bromide) results confirmed the biocompatibility of nanocomposite. Experimental parameters affecting the ss‐DNA molecules immobilization were optimized. Finally, by accumulation of the CB on the surface of the rGO‐Fe3O4‐Chit/ssDNA, very sensitive amperometric H2O2 sensor was fabricated. The electrocatalytic activity of the rGO‐Fe3O4‐Chit/DNA‐CB electrode toward H2O2 reduction was found to be very efficient, yielding very low detection limit (DL) of 42 nM and a sensitivity of 8.51 μA/μM. Result shows that complex matrices of the human serum samples did not interfere with the fabricated sensor. The developed sensor provided significant advantages in terms of low detection limit, high stability and good reproducibility for detection of H2O2 in comparison with recently reported electrochemical H2O2 sensors. 相似文献
18.
《Electroanalysis》2017,29(11):2507-2515
In the present study, a novel enzymatic glucose biosensor using glucose oxidase (GOx) immobilized into (3‐aminopropyl) triethoxysilane (APTES) functionalized reduced graphene oxide (rGO‐APTES) and hydrogen peroxide sensor based on rGO‐APTES modified glassy carbon (GC) electrode were fabricated. Nafion (Nf) was used as a protective membrane. For the characterization of the composites, Fourier transform infrared spectroscopy (FTIR), X‐ray powder diffractometer (XRD), and transmission electron microscopy (TEM) were used. The electrochemical properties of the modified electrodes were investigated using electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry. The resulting Nf/rGO‐APTES/GOx/GC and Nf/rGO‐APTES/GC composites showed good electrocatalytical activity toward glucose and H2O2, respectively. The Nf/rGO‐APTES/GC electrode exhibited a linear range of H2O2 concentration from 0.05 to 15.25 mM with a detection limit (LOD) of 0.017 mM and sensitivity of 124.87 μA mM−1 cm−2. The Nf/rGO‐APTES/GOx/GC electrode showed a linear range of glucose from 0.02 to 4.340 mM with a LOD of 9 μM and sensitivity of 75.26 μA mM−1 cm−2. Also, the sensor and biosensor had notable selectivity, repeatability, reproducibility, and storage stability. 相似文献
19.
Based on the immobilization of horseradish peroxidase (HRP) in chitosan(CS) on a glassy carbon electrode (GCE) modified with the Au‐Pt alloy nanoparticles (NPs) / polyaniline nanotube (nanoPAN) nanocomposite film, a novel hydrogen peroxide biosensor was constructed. The modified processes of GCE were monitored by cyclic voltammetry and electrochemical impedance spectroscopy. Au‐PtNPs/nanoPAN/CS had a better synergistic electrochemical effect than did AuNPs/nanoPAN/CS or PtNPs/nanoPAN/CS. The amperometric response of the biosensor towards H2O2 was investigated by successively adding aliquots of H2O2 to a continuous stirring phosphate buffer solution under the optimized conditions. Because Au‐PtNPs have unique catalytic properties and good biocompatibility, and especially Au‐PtNPs and nanoPAN have synergistic augmentation for facilitating electron‐transfer, the biosensor displayed a fast response time (<2 s) and broad linear response to H2O2 in the range from 1.0 to 2200 μmol L?1 with a relatively low detection limit of 0.5 μmol L?1 at 3 times the background noise. Moreover, the biosensor can be applied in practical analysis and exhibited high sensitivity, good reproducibility, and long‐term stability. 相似文献
20.
Silicomolybdate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐SiMo) film modified glassy carbon electrode was prepared by means of electrostatically trapping the silicomolybdate anion in the cationic film. The PLL‐GA‐SiMo film was stable and the charge transport through the film was fast. The modified electrode shows excellent electrocatalytic activity towards hydrogen peroxide reduction with significant reduction of overpotential, however, not responded to potential interferrents such as dopamine, ascorbic acid and uric acid. This unique feature of PLL‐GA‐SiMo modified electrode allowed for the development of a highly selective method for the determination of H2O2 in the presence of interferents. 相似文献