首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Hydroxylation of mesitylene by a nonheme manganese(IV)–oxo complex, [(N4Py)MnIV(O)]2+ ( 1 ), proceeds via one‐step hydrogen‐atom transfer (HAT) with a large deuterium kinetic isotope effect (KIE) of 3.2(3) at 293 K. In contrast, the same reaction with a triflic acid‐bound manganese(IV)‐oxo complex, [(N4Py)MnIV(O)]2+‐(HOTf)2 ( 2 ), proceeds via electron transfer (ET) with no KIE at 293 K. Interestingly, when the reaction temperature is lowered to less than 263 K in the reaction of 2 , however, the mechanism changes again from ET to HAT with a large KIE of 2.9(3). Such a switchover of the reaction mechanism from ET to HAT is shown to occur by changing only temperature in the boundary region between ET and HAT pathways when the driving force of ET from toluene derivatives to 2 is around ?0.5 eV. The present results provide a valuable and general guide to predict a switchover of the reaction mechanism from ET to the others, including HAT.  相似文献   

2.
It would be desirable to establish and standardize methods that can measure the total antioxidant capacity level directly from vegetable extracts containing phenolics. Antioxidant capacity assays may be broadly classified as electron transfer (ET)- and hydrogen atom transfer (HAT)-based assays. The majority of HAT assays are kinetics-based, and involve a competitive reaction scheme in which antioxidant and substrate compete for peroxyl radicals thermally generated through the decomposition of azo compounds. ET-based assays measure the capacity of an antioxidant in the reduction of an oxidant, which changes colour when reduced. ET assays include the ABTS/TEAC, CUPRAC, DPPH, Folin-Ciocalteu and FRAP methods, each using different chromogenic redox reagents with different standard potentials. This review intends to offer a critical evaluation of existing antioxidant assays applied to phenolics, and reports the development by our research group of a simple and low-cost antioxidant capacity assay for dietary polyphenols, vitamins C and E, and human serum antioxidants, utilizing the copper(II)-neocuproine reagent as the chromogenic oxidizing agent, which we haved named the CUPRAC (cupric ion reducing antioxidant capacity) method. This method offers distinct advantages over other ET-based assays, namely the selection of working pH at physiological pH (as opposed to the Folin and FRAP methods, which work at alkaline and acidic pHs, respectively), applicability to both hydrophilic and lipophilic antioxidants (unlike Folin and DPPH), completion of the redox reactions for most common flavonoids (unlike FRAP), selective oxidation of antioxidant compounds without affecting sugars and citric acid commonly contained in foodstuffs and the capability to assay -SH bearing antioxidants (unlike FRAP). Other similar ET-based antioxidant assays that we have developed or modified for phenolics are the Fe(III)- and Ce(IV)-reducing capacity methods.  相似文献   

3.
A novel mild, visible‐light‐induced palladium‐catalyzed hydrogen atom translocation/atom‐transfer radical cyclization (HAT/ATRC) cascade has been developed. This protocol involves a 1,5‐HAT process of previously unknown hybrid vinyl palladium radical intermediates, thus leading to iodomethyl carbo‐ and heterocyclic structures.  相似文献   

4.
Pterins (also known as pteridines) are common animal colorants that constitute heterocyclic compounds and have the highest nitrogen content of any pigment analyzed from animals. It has been reported that pterins modulate oxidative stress as these molecules are able to scavenge free radicals. Previous reports suggest three possible mechanisms that are responsible for scavenging free radicals; these are electron transfer (ET) reaction, hydrogen atom transfer (HAT) and radical addition. In this paper, the facility to scavenge free radicals (antiradical power) of pterins is analyzed, using density functional theory calculations and considering two possible mechanisms: ET and HAT. For the electron transfer process, considering the electron donor facility of the free radical scavenger molecules, vertical ionization energy of pterins indicates that the antiradical power of those pterins is lower than the antiradical power of any carotenoids (except for tetrahydrobiopterin). In terms of the HAT mechanism, the bond dissociation energy involved in the removal of one hydrogen atom from pterins is higher than for carotenoids (except for sepiapterin and 7,8-dihydrobiopterin). It can be expected that the most reactive molecules are those that have the smallest dissociation energy since the dissociation of the hydrogen atom is the first step of the reaction. This could indicate that some pterins are depicted as poorer antiradicals than carotenoids in terms of the HAT mechanism. Further studies focusing on the third mechanism (radical addition) and the kinetics of the reactions are necessary in order to fully understand the antiradical power of these substances. For this reason, work continues in order to clarify these aspects.  相似文献   

5.
Polyphenols are effective antioxidants and their behavior has been studied in depth. However, a structural characterization of the species formed immediately upon hydrogen‐atom transfer (HAT), a key reaction of oxidative stress, has not been achieved. The reaction of catechin and green‐tea polyphenols with highly reactive O‐centered H‐abstracting species was studied at the molecular level and in real time by using time‐resolved electron paramagnetic resonance (EPR) spectroscopy. This mirrors the reaction of highly reactive oxygen species with polyphenols. The results show that all phenolic OH groups display essentially identical reactivity. Accordingly, there is no site specificity for HAT and initial antioxidative events are demonstrated to be largely ruled by statistical (entropic) factors.  相似文献   

6.
Proton‐coupled electron transfer (PCET) events play a key role in countless chemical transformations, but they come in many physical variants which are hard to distinguish experimentally. While present theoretical approaches to treat these events are mostly based on physical rate coefficient models of various complexity, it is now argued that it is both feasible and fruitful to directly analyze the electronic N‐electron wavefunctions of these processes along their intrinsic reaction coordinate (IRC). In particular, for model systems of lipoxygenase and the high‐valent oxoiron(IV) intermediate TauD‐J it is shown that by invoking the intrinsic bond orbital (IBO) representation of the wavefunction, the common boundary cases of hydrogen atom transfer (HAT) and concerted PCET (cPCET) can be directly and unambiguously distinguished in a straightforward manner.  相似文献   

7.
The excitation of a RuII photosensitizer in the presence of ascorbic acid leads to the reduction of iminium ions to electron‐rich α‐aminoalkyl radical intermediates, which are rapidly converted into reductive amination products by thiol‐mediated hydrogen atom transfer (HAT). As a result, the reductive amination of carbonyl compounds with amines by photoredox catalysis proceeds in good to excellent yields and with broad substrate scope and good functional group tolerance. The three key features of this work are 1) the rapid interception of electron‐rich α‐aminoalkyl radical intermediates by polarity‐matched HAT in a photoredox reaction, 2) the method of reductive amination by photoredox catalysis itself, and 3) the application of this new method for temporally and spatially controlled reactions on a solid support, as demonstrated by the attachment of a fluorescent dye on an activated cellulose support by photoredox‐catalyzed reductive amination.  相似文献   

8.
Two new catalytic systems for hydrogen‐atom transfer (HAT) catalysis involving the N?H bonds of titanocene(III) complexes with pendant amide ligands are reported. In a monometallic system, a bifunctional catalyst for radical generation and reduction through HAT catalysis depending on the coordination of the amide ligand is employed. The pendant amide ligand is used to activate Crabtree's catalyst to yield an efficient bimetallic system for radical generation and HAT catalysis.  相似文献   

9.
As the main bioactive component of Chinese herbal medicine Danshen, salvianolic acid B (Sal B, or lithospermic acid B) was observed to maintain the viability of mesenchymal stem cells (MSCs) treated by Fenton's reagent in the study. Interestingly, at a higher concentration, Sal B could even increase the viability rate to 175.1%. In mechanistic analysis experiments, Sal B was found to resist DNA destruction by ?OH radical, scavenge various radicals in vitro, reduce Cu2+ → Cu+, chelate Fe2+ to yield an absorption maximum at 710 nm. Based on these results, we concluded that, (1) Sal B can not only protect MSCs against ?OH‐induced damages, but also promote their proliferation. This extraordinary capacity makes Sal B an ideal candidate in MSCs transplantation especially when MSCs are polluted by iron‐overload or other oxidative stress factors and, can partly be responsible for the versatile properties of Sal B in pharmacology. The possible mechanisms of its protective effect are hypothesized to include Fe2+ chelating, and direct radical scavenging which is involved in electron transfer (ET) or hydrogen atom transfer (HAT) from the catechol moieties. Its proliferation‐promoting effect is presumed to be from its ester group, carboxylic group, or benzofuran ring.  相似文献   

10.
Hydrogen atom, proton and electron transfer self-exchange and cross-reaction rates have been determined for reactions of Os(IV) and Os(III) aniline and anilide complexes. Addition of an H-atom to the Os(IV) anilide TpOs(NHPh)Cl(2) (Os(IV)NHPh) gives the Os(III) aniline complex TpOs(NH(2)Ph)Cl(2) (Os(III)NH(2)Ph) with a new 66 kcal mol(-1) N-H bond. Concerted transfer of H* between Os(IV)NHPh and Os(III)NH(2)Ph is remarkably slow in MeCN-d(3), with k(ex)(H*) = (3 +/- 2) x 10(-3) M(-1) s(-1) at 298 K. This hydrogen atom transfer (HAT) reaction could also be termed proton-coupled electron transfer (PCET). Related to this HAT process are two proton transfer (PT) and two electron transfer (ET) self-exchange reactions, for instance, the ET reactions Os(IV)NHPh + Os(III)NHPh(-) and Os(IV)NH(2)Ph(+) + Os(III)NH(2)Ph. All four of these PT and ET reactions are much faster (k = 10(3)-10(5) M(-1) s(-1)) than HAT self-exchange. This is the first system where all five relevant self-exchange rates related to an HAT or PCET reaction have been measured. The slowness of concerted transfer of H* between Os(IV)NHPh and Os(III)NH(2)Ph is suggested to result not from a large intrinsic barrier but rather from a large work term for formation of the precursor complex to H* transfer and/or from significantly nonadiabatic reaction dynamics. The energetics for precursor complex formation is related to the strength of the hydrogen bond between reactants. To probe this effect further, HAT cross-reactions have been performed with sterically hindered aniline/anilide complexes and nitroxyl radical species. Positioning steric bulk near the active site retards both H* and H(+) transfer. Net H* transfer is catalyzed by trace acids and bases in both self-exchange and cross reactions, by stepwise mechanisms utilizing the fast ET and PT reactions.  相似文献   

11.
In the past decade, there was a great deal of interest and excitement in developing more active antioxidants and cancer chemoprevention agents than resveratrol, a naturally occurring stilbene. In this work, eight resveratrol‐directed 4‐mercaptostilbenes were constructed based on the inspiration that thiophenol should be a stronger radical scavenger than phenol, and their reaction rates with galvinoxyl (GO.) and 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH.) radicals in methanol and ethyl acetate were measured by using stopped‐flow UV/Vis spectroscopy at 25 °C. Kinetic analysis demonstrates that 4‐mercaptostilbenes are extraordinary radical scavengers, and the substitution of the 4‐SH group for the 4‐OH group in the stilbene scaffold is an important strategy to improve the radical‐scavenging activity of resveratrol. Surprisingly, in methanol, some of the 4‐mercaptostilbenes are 104‐times more active than resveratrol, dozens of times to hundreds of times more effective than known antioxidants (α‐tocopherol, ascorbic acid, quercetin, and trolox). The detailed radical‐scavenging mechanisms were discussed based on acidified‐kinetic analysis. Addition of acetic acid remarkably reduced the GO. and DPPH. radical‐scavenging rates of the 4‐mercaptostilbenes in methanol, a solvent that supports ionization, suggesting that the reactions proceed mainly through a sequential proton loss electron transfer mechanism. In contrast, an interesting acid‐promoted kinetics was observed for the reactions of the 4‐mercaptostilbenes with DPPH. in ethyl acetate, a solvent that weakly supports ionization. The increased ratio in rates is closely correlated with the electron‐rich environment in the molecules, suggesting that the acceleration could benefit from the contribution of the electron transfer from the 4‐mercaptostilbenes and DPPH.. However, the addition of acetic acid had no influence on the GO.‐scavenging rates of the 4‐mercaptostilbenes in ethyl acetate, due to the occurrence of the direct hydrogen atom transfer. Our results show that the radical‐scavenging activity and mechanisms of 4‐mercaptostilbenes depends significantly on the molecular structure and acidity, the nature of the attacking radical, and the ionizing capacity of the solvent.  相似文献   

12.
The mechanism of proton transfer (PT)/electron transfer (ET) in acylamide units was explored theoretically using density functional theory in a representative model (a cyclic coupling mode between formamide and the N-dehydrogenated formamidic radical, FF). In FF, PT/ET normally occurs via a seven-center cyclic proton-coupled electron transfer (PCET) mechanism with a N-->N PT and an O-->O ET. However, when different hydrated metal ions are bound to the two oxygen sites of FF, the PT/ET mechanism may significantly change. In addition to their inhibition of PT/ET rate, the hydrated metal ions can effectively regulate the FF PT/ET cooperative mechanism to produce a single pathway hydrogen atom transfer (HAT) or a flexible proton coupled electron transfer (PCET) mechanism by changing the ET channel. The regulation essentially originates from the change in the O...O bond strength in the transition state, subject to the binding ability of the hydrated metal ions. In general, the high valent metal ions and those with large binding energies can promote HAT, and the low valent metal ions and those with small binding energies favor PCET. Hydration may reduce the Lewis acidity of cations, and thus favor PCET. Good correlations among the binding energies, barrier heights, spin density distributions, O...O contacts, and hydrated metal ion properties have been found, which can be used to interpret the transition in the PT/ET mechanism. These findings regarding the modulation of the PT/ET pathway via hydrated metal ions may provide useful information for a greater understanding of PT/ET cooperative mechanisms, and a possible method for switching conductance in nanoelectronic devices.  相似文献   

13.
Gas-phase reaction enthalpies related to the individual steps of three phenolic antioxidants action mechanisms – hydrogen atom transfer (HAT), single-electron transfer–proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET) for four tocopherols and seven chromans – were calculated using DFT/B3LYP method. For α-tocopherol, one of the chromans and phenol, reaction enthalpies in water were computed. In comparison to gas phase, water causes severe changes in the energetics of studied compounds antioxidant action. From the thermodynamic point of view, entering SPLET mechanism represents the most probable process in water.  相似文献   

14.
Flavonolignans from silymarin, the standardized plant extract obtained from thistle, exhibit various antioxidant activities, which correlate with the other biological and therapeutic properties of that extract. To highlight the mode of action of flavonolignans as free radical scavengers and antioxidants, 10 flavonolignans, selectively methylated at different positions, were tested in vitro for their capacity to scavenge radicals (DPPH and superoxide) and to inhibit the lipid peroxidation induced on microsome membranes. The results are rationalized on the basis of (i) the oxidation potentials experimentally obtained by cyclic voltammetry and (ii) the theoretical redox properties obtained by quantum-chemical calculations (using a polarizable continuum model (PCM)-density functional theory (DFT) approach) of the ionization potentials and the O-H bond dissociation enthalpies (BDEs) of each OH group of the 10 compounds. We clearly establish the importance of the 3-OH and 20-OH groups as H donors, in the presence of the 2,3 double bond and the catechol moiety in the E-ring, respectively. For silybin derivatives (i.e., in the absence of the 2,3 double bond), secondary mechanisms (i.e., electron transfer (ET) mechanism and adduct formation with radicals) could become more important (or predominant) as the active sites for H atom transfer (HAT) mechanism are much less effective (high BDEs).  相似文献   

15.
A terminal iridium oxo complex with an open‐shell (S=1) ground state was isolated upon hydrogen atom transfer (HAT) from the respective iridium(II) hydroxide. Electronic structure examinations support large spin delocalization to the oxygen atom. Selected oxo transfer reactions indicate the ambiphilic reactivity of the iridium oxo moiety. Calorimetric and computational examinations of the HAT revealed a bond dissociation free energy for the IrO?H bond that is sufficient for hydrogen atom abstraction towards C?H bonds and small contributions from entropy and spin–orbit coupling to the HAT thermochemistry.  相似文献   

16.
Proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) reactions of the phenoxyl/phenol couple are studied theoretically by using wave function theory (WFT) as well as DFT methods. At the complete active space self-consistent field (CASSCF) level, geometry optimization is found to give two transition states (TSs); one is the PCET type with two benzene rings being nearly coplanar, and the other is the HAT type with two benzene rings taking a stacking structure. Geometry optimization at the (semilocal) DFT level, on the other hand, is found to give only one transition state (i.e., the PCET-type one) and fail to obtain the stacking TS structure. By comparing various levels of theories (including long-range corrected DFT functionals), we demonstrate that the Hartree-Fock exchange at long range plays a critical role in obtaining the sufficient stacking stabilization of the present open-shell system, and that the sole addition of empirical dispersion correction to semilocal DFT functionals may not be adequate for describing such a stacking interaction. Next, we investigate the solvent effect on the PCET and HAT TS thus obtained using the reference interaction site model self-consistent field (RISM-SCF) method. The results suggest that the free energy barrier increases with increasing polarity of the solvent, and that the solvent effects are stronger for the PCET TS than the stacking HAT TS pathway. The reason for this is discussed based on the dipole moment of different TS structures in solution.  相似文献   

17.
The oxidation of benzyl alcohols with the enzyme laccase, under mediation by appropriate mediator compounds, yields carbonylic products, whereas laccase can not oxidise these non-phenolic substrates directly. The oxidation step is performed by the oxidised form of the mediator (Med(ox)), generated on its interaction with laccase. The Med(ox) can follow either an electron transfer (ET) or a radical hydrogen atom transfer (HAT) route of oxidation of the substrates. Experimental evidence is reported that enables unambiguous assessment of the occurrence of either one the oxidation routes with each of the investigated mediators, namely, ABTS, HBT, HPI and VLA. Support to the conclusions is provided by (i) investigating the intermolecular selectivity of oxidation with appropriate substrates, (ii) attempting Hammett correlations for the oxidation of a series of 4-X-substituted benzyl alcohols, (iii) measuring the kinetic isotope effect, (iv) investigating the product pattern with suitable probe precursors. Based on these points, a HAT mechanism results to be followed by the laccase-HBT, laccase-HPI and laccase-VLA systems, whereas an ET route appears feasible in the case of the laccase-ABTS system.  相似文献   

18.
Neutral eosin Y‐derived photoexcited states have been found to serve as photoacids and direct hydrogen atom transfer (HAT) catalysts in the activation of glycals and C?H bonds, respectively. These studies pave the way for further use of eosin Y in photochemical synthesis.  相似文献   

19.
The synthetic utility of tertiary amines to oxidatively generate α‐amino radicals is well established, however, primary amines remain challenging because of competitive side reactions. This report describes the site‐selective α‐functionalization of primary amine derivatives through the generation of α‐amino radical intermediates. Employing visible‐light photoredox catalysis, primary sulfonamides are coupled with electron‐deficient alkenes to efficiently and mildly construct C?C bonds. Interestingly, a divergence between intermolecular hydrogen‐atom transfer (HAT) catalysis and intramolecular [1,5] HAT was observed through precise manipulation of the protecting group. This dichotomy was leveraged to achieve excellent α/δ site‐selectivity.  相似文献   

20.
Proton-coupled electron transfer (PCET), a class of formal hydrogen atom transfer (HAT) reactions, is of widespread interest because it is implicated in a broad range of chemical and biochemical processes. PCET is typically differentiated from HAT by the fact that it occurs when a proton and electron are transferred between different sets of molecular orbitals. Previous theoretical work predicted that hydrogen bonding between reactants is a necessary but not sufficient condition for H exchanges to take place by PCET. This implies that HAT is the only mechanism for H exchange between two carbon atoms. In this work, we present computational results that show that the H exchange in the tert-butylperoxyl/phenol couple, a prototypical antioxidant exchange reaction, occurs by PCET and that the transfer of the electron can occur via an oxygen lone pair-ring pi overlap. We then show that the H exchange in a model for the tyrosyl/tyrosine couple, which is implicated in ribonucleotide reductase chemistry, occurs via PCET and that one path for the electron transfer is provided by a strong pi-stacking interaction. Finally, we show that a pi-stacking interaction in the benzyl/toluene couple, a system in which there is no H-bonding, can result in this exchange occurring via PCET to some extent. Collectively, these results indicate that PCET reactions are not unique to systems that can engage in H-bonding and that lone pair-pi and pi-pi interactions in these systems may be more important than previously understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号