首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In this study, we investigated the performance of several commercial sorbents (Sep‐pack® C18, tC18, C8 and tC2, Oasis® HLB, Isolute® ENV+, Strata?‐X and Oasis® MCX) for the determination of opioid peptides by solid‐phase extraction coupled on‐line to capillary electrophoresis (SPE‐CE). First, standard solutions were analyzed in order to achieve the lowest LOD and the best electrophoretic separations using UV detection. The best results were obtained using C18, C8 and tC2 sorbents, which were examined for the analysis of spiked human plasma samples. A double‐step sample clean‐up pretreatment, which consisted of precipitation with acetonitrile and filtration, was needed to prevent saturation of the on‐line SPE microcartridge. The filtration step was critical to obtain optimum analyte recovery and to clean up the sample matrix. A range of centrifugal filters and filtration conditions were tested and the recoveries of the sample pretreatment were evaluated by CE‐ESI‐MS. The LODs attained through SPE‐CE‐UV were approximately ten‐fold better with C18 than with C8 and tC2. The 0.1 μg/mL LODs achieved by C18‐SPE‐CE‐UV were further improved until we could detect 1 ng/mL concentrations of opioid peptides in plasma samples by C18‐SPE‐CE‐ESI‐MS, due to the outstanding selectivity of the MS detection.  相似文献   

2.
Several commercial immobilized metal affinity chromatography sorbents were evaluated in this study for the analysis of two small peptide fragments of the amyloid β‐protein (Aβ) (Aβ(1–15) and Aβ(10–20) peptides) by on‐line immobilized metal affinity SPE‐CE (IMA‐SPE‐CE). The performance of a nickel metal ion (Ni(II)) sorbent based on nitrilotriacetic acid as a chelating agent was significantly better than two copper metal ion (Cu(II)) sorbents based on iminodiacetic acid. A BGE of 25 mM phosphate (pH 7.4) and an eluent of 50 mM imidazole (in BGE) yielded a 25‐fold and 5‐fold decrease in the LODs by IMA‐SPE‐CE‐UV for Aβ(1–15) and Aβ(10–20) peptides (0.1 and 0.5 μg/mL, respectively) with regard to CE‐UV (2.5 μg/mL for both peptides). The phosphate BGE was also used in IMA‐SPE‐CE‐MS, but the eluent needed to be substituted by a 0.5% HAc v/v solution. Under optimum preconcentration and detection conditions, reproducibility of peak areas and migration times was acceptable (23.2 and 12.0%RSD, respectively). The method was more sensitive for Aβ(10–20) peptide, which could be detected until 0.25 μg/mL. Linearity for Aβ(10–20) peptide was good in a narrow concentration range (0.25–2.5 μg/mL, R2 = 0.93). Lastly, the potential of the optimized Ni(II)‐IMA‐SPE‐CE‐MS method for the analysis of amyloid peptides in biological fluids was evaluated by analyzing spiked plasma and serum samples.  相似文献   

3.
The use of SPE coupled in‐line to CE using electrospray MS detection (in‐line SPE‐CE‐ESI‐MS) was investigated for the preconcentration and separation of four UV filters: benzophenone‐3, 2,2‐dihydroxy‐4‐methoxybenzophenone, 2,4‐dihydroxybenzophenone and 2‐phenylbenzimidazole‐5‐sulphonic acid. First, a CE‐ESI‐MS method was developed and validated using standard samples, obtaining LODs between 0.06 μg/mL and 0.40 μg/mL. For the in‐line SPE‐CE‐ESI‐MS method, three different sorbents were evaluated and compared: Oasis HLB, Oasis MCX, and Oasis MAX. For each sorbent, the main parameters affecting the preconcentration performance, such as sample pH, volume, and composition of the elution plug, and sample injection time were studied. The Oasis MCX sorbent showed the best performance and was used to validate the in‐line SPE‐CE‐ESI‐MS methodology. The LODs reached for standard samples were in the range between 0.01 and 0.05 ng/mL with good reproducibility and the developed strategy provided sensitivity enhancement factors between 3400‐fold and 34 000‐fold. The applicability of the developed methodology was demonstrated by the analysis of UV filters in river water samples.  相似文献   

4.
Fluoroquinolones are a group of synthetic antibiotics with a broad activity spectrum against mycoplasma, Gram‐positive, and Gram‐negative bacteria. Due to the extensive use of fluoroquinolones in farming and veterinary science, there is a constant need in the analytical methods able to efficiently monitor their residues in food products of animal origin, regulated by Commission Regulation (European Union) no. 37/2010. Herein, field‐enhanced sample injection for sample stacking prior the CZE separation was developed inside a bubble cell capillary for highly sensitive detection of five typical fluoroquinolones in bovine milk. Ethylenediamine was proposed as the main component of BGE for the antibiotics separation. The effect of BGE composition, injection parameters, and water plug length on the field‐enhanced sample injection‐based CE with UV detection was investigated. Under the optimized conditions, described field‐enhanced sample injection‐based CE‐UV analysis of fluoroquinolones provides LODs varying from 0.4 to 1.3 ng/mL. These LOD values are much lower (from 460 to 1500 times) than those obtained by a conventional CE in a standard capillary without bubble cell. The developed method was finally applied for the analysis of fluoroquinolones in low‐fat milk from a Swiss supermarket. Sample recovery values from 93.6 to 106.0% for different fluoroquinolones, and LODs from 0.7 to 2.5 μg/kg, were achieved. Moreover, the proposed ethylenediamine‐based BGE as volatile and compatible with MS system, enabled the coupling of the field‐enhanced sample injection‐based CE with a recently introduced electrostatic spray ionization MS via an iontophoretic fraction collection interface for qualitative fluoroquinolones identification.  相似文献   

5.
This work proposes an approach to the direct analysis of S‐adenosylhomocysteine (SAH) and the methylation index in blood using CE with UV detection (CE‐UV). After application of meglumine postinjection, we achieved SAH in‐capillary preconcentration in the HClO4 extracts of erythrocytes, which improved the detection limit (S/N = 3) of SAH up to 3 fmol or 180 nmol/L at the injection volume of 50 nL, taking into account the sample dilution rate. CE‐UV was carried out in 30 mM glycine and 45 mmol/L HCl (pH ~1.8) at 17 kV in a capillary 48 cm in length and 50 μm id. Accuracy of the technique was 101% and reproducibility was about 12%.  相似文献   

6.
In this study, SPE-CE-ESI-MS is explored for the preconcentration and separation of dilute solutions of six opioid peptides. First, a CE-ESI-MS methodology was developed and validated. LODs of around 1 microg/mL were obtained for all the studied peptides. For SPE-CE-ESI-MS experiments, a home-made SPE microcartridge containing a C18 sorbent was constructed near the inlet of the separation capillary. After optimizing the on-line preconcentration methodology, LODs between 10 and 0.1 ng/mL were achieved. Repeatability, reproducibility, durability of the microcartridges and linearity of the SPE-CE-ESI-MS methodology were also investigated and compared to the values obtained by CE-ESI-MS. Finally, human plasma samples fortified with opioid peptides were analyzed by SPE-CE-ESI-MS in order to show the potential of the methodology for the analysis of biological fluids.  相似文献   

7.
In this study, the suitability of solid‐phase extraction (SPE) coupled in‐line to CE with UV–Vis detection was evaluated for the preconcentration and separation of diluted solutions of five pharmaceuticals compounds: benzafibrate, piroxicam, diclofenac sodium, naproxen and clofibric acid. An SPE analyte concentrator containing Oasis® HLB sorbent was constructed without frits and placed near the inlet end of the separation capillary. Different parameters such as sample pH, composition and volume of the elution plug and sample loading time were studied in order to obtain the maximum preconcentration factors. The LODs reached for standard samples were in the range 0.06–0.5 ng/mL with good reproducibility, and the developed strategy provides sensitivity enhancement factors around 14 000‐fold in peak area and 5900‐fold in peak height compared with the normal hydrodynamic injection. Finally, river water samples fortified with the pharmaceutical compounds were analyzed by the developed in‐line SPE‐CE‐UV method in order to show the potential of the methodology for the analysis of environmental aquatic samples. For these samples, high values of relative recoveries, between 73–107% and 79–103% for two concentration levels, 5 and 25 ng/mL, respectively, were obtained and LODs ranged between 0.19 and 1 ng/mL.  相似文献   

8.
《Electrophoresis》2018,39(11):1382-1389
A sheath‐flow interface is the most common ionization technique in CE‐ESI‐MS. However, this interface dilutes the analytes with the sheath liquid and decreases the sensitivity. In this study, we developed a sheathless CE‐MS interface to improve sensitivity. The interface was fabricated by making a small crack approximately 2 cm from the end of a capillary column fixed on a plastic plate, and then covering the crack with a dialysis membrane to prevent metabolite loss during separation. A voltage for CE separation was applied between the capillary inlet and the buffer reservoir. Under optimum conditions, 52 cationic metabolite standards were separated and selectively detected using MS. With a pressure injection of 5 kPa for 15 s (ca. 1.4 nL), the detection limits for the tested compounds were between 0.06 and 1.7 μmol/L (S/N = 3). The method was applied to analysis of cationic metabolites extracted from a small number (12 000) of cancer cells, and the number of peaks detected was about 2.5 times higher than when using conventional sheath‐flow CE‐MS. Because the interface is easy to construct, it is cost‐effective and can be adapted to any commercially available capillaries. This method is a powerful new tool for highly sensitive CE‐MS‐based metabolomic analysis.  相似文献   

9.
This paper proposes and compares two approaches based on off- and in-line solid-phase extraction (SPE), intended to enhance sensitivity in capillary electrophoresis with ultraviolet detection (CE-UV) using as a model the determination of ochratoxin A (OA) in river water samples. In the off-line SPE mode, the reversed-phase sorbent (octadecilsylane, C18) selectively retains the target analyte (OA) and allows large volumes of the sample (70 mL) to be introduced and subsequently eluted in a small volume (0.1 mL) of an appropriate solution. In the in-line SPE mode, a custom-made microcartridge is inserted near the inlet of the capillary, which is filled with the same C18 sorbent. This solid phase selectively retains OA present in a sample volume as low as approximately 640 μL for subsequent elution with ca. 135 nL of an appropriate eluent. The limit of detection (LOD) obtained with the in-line SPE method was 1 ng L-1, which is 3 orders of magnitude lower than that obtained with CE-UV and roughly 1 order lower than that provided by the off-line SPE-CE-UV method.  相似文献   

10.
The first application of charged polymer‐protected gold nanoparticles (Au NPs) as semi‐permanent capillary coating in CE‐MS was presented. Poly(diallyldimethylammonium chloride) (PDDA) was the only reducing and stabilizing agent for Au NPs preparation. Stable and repeatable coating with good tolerance to 0.1 M HCl, methanol, and ACN was obtained via a simple rinsing procedure. Au NPs enhanced the coating stability toward flushing by methanol, improved the run‐to‐run and capillary‐to‐capillary repeatabilities, and improved the separation efficiency of heroin and its basic impurities for tracing geographical origins of illicit samples. Baseline resolution of eight heroin‐related alkaloids was achieved on the PDDA‐protected Au NPs‐coated capillary under the optimum conditions: 120 mM ammonium acetate (pH 5.2) with addition of 13% methanol, separation temperature 20°C, applied voltage ?20 kV, and capillary effective length 60.0 cm. CE‐MS analysis with run‐to‐run RSDs (n=5) of migration time in the range of 0.43–0.62% and RSDs (n=5) of peak area in the range of 1.49–4.68% was obtained. The established CE‐MS method would offer sensitive detection and confident identification of heroin and related compounds and provide an alternative to LC‐MS and GC‐MS for illicit drug control.  相似文献   

11.
Parathyroid hormone (PTH) is a common clinical marker whose quantification relies on immunoassays, giving variable results as batch, brand, or target epitope changes. Sheathless CE‐ESI‐MS, combining CE resolution power and low‐flow ESI sensitivity, was applied to the analysis of PTH in its native conformation in the presence of related forms. Fused silica and neutral‐coated capillaries were investigated, as well as preconcentration methods such as transient isotachophoresis, field‐amplified sample injection (FASI), and electrokinetic supercharging (EKS). The method for the separation of PTH and its variants was first developed using fused‐silica capillary with UV detection. An acidic BGE was used to separate 1–84 PTH (full length), 7–84 PTH, and 1–34 PTH. Acetonitrile was added to the BGE to reduce peptide adsorption onto the capillary wall and transient isotachophoresis was used as analyte preconcentration method. The method was then transferred to a sheathless CE‐ESI‐MS instrument. When using a fused silica capillary, CE‐MS was limited to μg/mL levels. The use of a neutral coating combined with FASI or EKS allowed a significant increase in sensitivity. Under these conditions, 1–84 PTH, 7–84 PTH, and 1–34 PTH were detected at concentrations in the low ng/mL (FASI) or pg/mL (EKS) range.  相似文献   

12.
This paper presents a capillary electrophoresis method, developed for the detection, in human urine, of beta‐adrenergic agents and phenolalkylamines. The electrophoretic separation is achieved in less than 10 min and is based on the use of CEofix kit, for the dynamic capillary coating. The effects of accelerator buffer pH and separation voltage were investigated. The optimum buffer pH was found to be 2.5 for beta2‐agonists and 6.2 for beta‐blockers and phenoalkylamines with a separation voltage of 15 kV. Urine samples spiked with the compounds here studied were treated according to the standard procedure (SPE and evaporation to dryness) and analyzed by CE interfaced with an UV diode‐array, set at 195 and 210 nm. The quantitative validation results, obtained analyzing samples at three different concentrations, show a good precision of peak areas that do not exceed 5% for intra‐day assays and 10% for inter‐day assays. Good linearity (r2 > 0.995) was obtained within the 50–500 ng/mL concentration range. The qualitative validation data show a relative migration times (MTs) variation lower than 1%. The analytes were clearly distinguishable in urine, with LOD and LOQ in the range of 10–80 and 40–100 ng/mL, respectively.  相似文献   

13.
A simple, rapid, capillary zone electrophoresis method was developed and validated for the analysis of two novel aminoalkanol derivatives ( I ) and ( II ) of 1,7‐diethyl‐8,9‐diphenyl‐4‐azatricyclo[5.2.1.02,6]dec‐8‐ene‐3,5,10‐trione, which were found in earlier studies as potential anticancer drugs. Samples were analyzed to demonstrate the specificity and stability indicating ability of the developed method. The samples were extracted using n‐hexane‐ethyl acetate mixture in the ratio of 90:10. Electrophoretic separation was performed on a eCAP fused silica capillary (37 cm length, 50 µm inside diameter) with a 50 mM tetraborate buffer as a background electrolyte adjusted to pH = 2.5. The separation time of ( I ) and ( II ) was achieved within 7 min. In addition, analysis of the two compounds in the serum was conducted. Limits of detection of ( I ) and ( II ) by UV absorbance at 200 nm were achieved in the range of 87.4–92.1 ng/mL. The sufficient recovery was observed in the range of 90.3–99.8%. The quantification limits for the compounds ( I ) and ( II ) were in the range of 279.71–291.03 ng/mL, respectively. The method has been successfully applied to the analysis of compounds ( I ) and ( II ) in serum samples.  相似文献   

14.
This work presents a strategy based on the in‐line coupling of SPE and CE for the chiral determination of cathinones (R,S‐mephedrone, R,S‐4‐methylephedrine, and R,S‐ methylenedioxypyrovalerone) in urine samples, using a sample pretreatment based on liquid‐liquid extraction. The chiral separation of the compounds is achieved by adding a mixture of 8 mM 2‐hydroxypropil β‐CD and 5 mM β‐CD to the BGE, which consists of 70 mM of monosodium phosphate aqueous solution at pH 2.5. Oasis HLB was the selected sorbent for the in‐line SPE device, and to reduce analysis time and LODs, several parameters affecting the in‐line SPE system were evaluated, such as pressure and time of sample injection and dimensions of the SPE device. The highest preconcentration factors were achieved by using 3 bar of injection pressure for 20 min with an in‐line SPE device of 2 mm length and 150 µm of i.d. The developed method was applied to determine the presence of the compounds in spiked urine samples. The LODs obtained were between 3 and 8 ng/mL, and these levels were below the usual concentrations at which these drugs are present in urine from cathinone abusers. Thus, the optimized method has the potential to be applied for toxicological and forensic purposes.  相似文献   

15.
A liquid chromatographic–electrospray ionization–time‐of‐flight/mass spectrometric (LC‐ESI‐TOF/MS) method was developed and applied for the determination of WKYMVm peptide in rat plasma to support preclinical pharmacokinetics studies. The method consisted of micro‐elution solid‐phase extraction (SPE) for sample preparation and LC‐ESI‐TOF/MS in the positive ion mode for analysis. Phenanthroline (10 mg/mL) was added to rat blood immediately for plasma preparation followed by addition of trace amount of 2 m hydrogen chloride to plasma before SPE for stability of WKYMVm peptide. Then sample preparation using micro‐elution SPE was performed with verapamil as an internal standard. A quadratic regression (weighted 1/concentration2), with the equation y = ax2 + bx + c was used to fit calibration curves over the concentration range of 3.02–2200 ng/mL for WKYMVm peptide. The quantification run met the acceptance criteria of ±25% accuracy and precision values. For quality control samples at 15, 165 and 1820 ng/mL from the quantification experiment, the within‐run and the between‐run accuracy ranged from 92.5 to 123.4% with precision values ≤15.1% for WKYMVm peptide from the nominal values. This novel LC‐ESI‐TOF/MS method was successfully applied to evaluate the pharmacokinetics of WKYMVm peptide in rat plasma.  相似文献   

16.
Paliperidone is a new antipsychotic drug with a relatively low therapeutic concentration of 20–60 ng/mL. We established an accurate and sensitive CE method for the determination of paliperidone concentrations in human plasma in this study. To minimize matrix effect caused by quantification errors, paliperidone was extracted from human plasma using Oasis HLB SPE cartridges with three‐step washing procedure. To achieve sensitive quantification of paliperidone in human plasma, a high‐conductivity sample solution with sweeping‐MEKC method was applied for analysis. The separation is performed in a BGE composed of 75 mM phosphoric acid, 100 mM SDS, 12% acetonitrile, and 15% tetrahydrofuran. Sample solution consisted of 10% methanol in 250 mM phosphoric acid and the conductivity ratio between sample matrix and BGE was 2.0 (γ, sample/BGE). The results showed it able to detect paliperidone in plasma samples at concentration as low as 10 ng/mL (S/N = 3) with a linear range between 20 and 200 ng/mL. Compared to the conventional MEKC method, the sensitivity enhancement factor of the developed sweeping‐MEKC method was 100. Intra‐ and interday precision of peak area ratios were less than 6.03%; the method accuracy was between 93.4 and 97.9%. This method was successfully applied to the analysis of plasma samples of patients undergoing paliperidone treatment.  相似文献   

17.
《Electrophoresis》2018,39(14):1771-1776
An ionic liquid‐based headspace in‐tube liquid‐phase microextraction (IL‐HS‐ITLPME) in‐line coupled with CE is proposed. The method is capable of quantifying trace amounts of phenols in environmental water samples. In the newly developed method, simply by placing a capillary injected with ionic liquids (IL) in the HS above the aqueous sample, volatile phenols were extracted into the IL acceptor phase in the capillary. After extraction, electrophoresis of the phenols in the capillary was carried out. Extraction parameters such as the extraction time, extraction temperature, ionic strength, volume of the sample solution, and IL types were systematically investigated. Under the optimized conditions, enrichment factors for four phenols were from 1510 to 1985. The proposed method provided a good linearity, low limits of detection (below 5.0 ng/mL), and good repeatability of the extractions (RSDs below 6.7%, n = 6). This method was then utilized to analyze two real environmental samples of Xiaoxi Lake and tap water, obtaining acceptable recoveries and precisions. Compared with the usual HS‐ITLPME for CE, IL‐HS‐ITLPME‐CE is a simple, low cost, fast, and environmentally friendly preconcentration technique.  相似文献   

18.
In this work, an efficient sample clean‐up method, named in‐tube electro‐membrane extraction, is modified to resolve the formation of bubbles in the extraction process. This modified method is applied for the extraction of two model analytes including tartrazine and sunset yellow from food samples. The method is based on the electro‐kinetic migration of ionized compounds by the application of an electrical potential difference, and on this basis the analytes under investigation, as anionic compounds, simply migrate from the donor phase and concentrate in the acceptor phase. A thin polypropylene sheet placed in the tube acts as a support for the membrane solvent, and it separates 30 μL of the aqueous acceptor from 1.2 mL of the aqueous donor. This setup can be used to solve the problem of extracting highly hydrophilic analytes. Response surface methodology is used for optimization of the experimental parameters so that under the optimized conditions, the method provides a good linearity in the range of 50–1000 ng/mL, low limits of detection (15–25 ng/mL), good extraction repeatabilities (relative standard deviations below 8.1%, n  = 5), and high extraction recoveries (54–76%).  相似文献   

19.
A simple and sensitive analytical method for four isomers of glycopyrrolate in rat plasma was developed using cation‐selective exhaustive injection‐sweeping cyclodextrin‐modified electrokinetic chromatography (CSEI‐Sweeping‐CDEKC) for online enrichment combined with dispersive micro‐solid‐phase extraction pretreatment. The CSEI‐Sweeping‐CDEKC was conducted on an uncoated fused silica capillary (40.2 cm × 75 μm) with an applied voltage of –20 kV. The electrophoretic analysis was carried out in 30 mM phosphate solution at pH 2.0 containing 20 mg/mL sulfated‐β‐cyclodextrin and 5% acetonitrile. Under these optimized conditions, the detection limit for racemic glycopyrrolate was found to be 2.0 ng/mL and this method could increase 495‐fold detection sensitivity compared with the traditional injection method. Additionally, the parameters that affected the extraction efficiency of dispersive micro‐solid‐phase extraction were also examined systematically. The glycopyrrolate isomers in rat plasma samples as low as 0.0625 μg/mL were able to be separated and detected by capillary electrophoresis with the aid of CSEI‐sweeping. The findings of this study show that the dispersive micro‐solid‐phase extraction pretreatment coupled with CSEI‐Sweeping‐CDEKC is a rapid and convenient method for analyzing glycopyrrolate isomers in rat plasma.  相似文献   

20.
This work about the development of yttria‐based polymeric coating using [bis(hydroxyethyl) amine] terminated polydimethylsiloxanes and yttrium trimethoxyethoxide inside the capillary. The coated capillary was utilized for online capillary microextraction and high‐performance liquid chromatography analysis. The prepared coating material was characterized using scanning electron microscopy, X‐ray photoelectron spectroscopy, energy dispersive X‐ray spectrometry, and thermogravimetric analysis. The coated capillary with polymer presented better extraction efficiency compared with the pure yttria‐based coated capillary with applicability in extreme pH environments (pH 0–pH 14). Excellent extraction towards polyaromatic hydrocarbons, aldehydes, ketones, alcohols, phenols, and amides was observed with limit of detection ranging from 0.18 to 7.35 ng/mL (S/N = 3) and reproducibility in between 0.6 and 6.8% (n = 3). Capillary‐to‐capillary extraction analysis has presented reproducibility between 4.1 and 9.9%. The analysis provided linear response for seven selected phenols in the range of 5–200 ng/mL with R2 values between 0.9971 and 0.9998. The inter‐day, intra‐day, and capillary‐to‐capillary reproducibility for phenols was also <10%. Real sample analysis by spiking 5, 50, and 200 ng/mL of phenols in wastewater and pool‐water produced recovery between 84.7 and 94.3% and reproducibility within 7.6% (n = 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号